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Abstract. The problem of the propagation of non linear waves in
solids with different internal structural scales is analysed. Making use

of a general model of microstructured solids, two particular relevant
models are studied in one dimensional setting: a solid with hierarchi-
cal microstructure and a solid with concurrent microstructures. In the

first case the behayiour of internal structures with two dffirent scales is
studied and for a particular choice of the strain energy function a 6th
order PDE is obtained with characteristic hierarchical structure. Us-
ing the same basic model, the case of two concurrent nicrostructures, as
introduced in [2], is stttdied and again for suitable explicit form of the
energy function we can obtain a 4th order PDE and actually prore the
possibility of propagation of solitary- and cnoidal wayes.

Keywords: wave propagation, microstructure, multiple scales, wave hie-
rarchy.

Riassunto. Viene affrontato il problema della propagazione di onde
non lineari in solidi con dffirenti scale per strutture inteme. A partire
da un modello generale di solidi con microstrutture si studiano due casi
unidimensionoli interessanti: un solido con gerarchia di microstniture
ed un solido con microstrutture conconenti. Nel primo caso si analizza
il comportamento di sffutture intetne con due diyerse scale e con una
particolare scelta dell'energia di deformazione si ottiene una PDE del
sesto ordine, con und struttura gerarchica caratteristica. A partire dallo
stesso modello di base, si studiail caso di due microstrutture concorrenti,
come introdoxe da [2] e si ottiene ora una PDE del qLtarto ordine e si
pub infine dimostrare la possibilitd di propagazione di onde solitarie e

cnoidali.

Parole chiave: propagazione di onde, microstrutture, scale multiple,
gerarchie di onde.
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1. Introduction

A complex system as it is understood nowadays is composed by its con-
stituents that interact with each other resulting in emergent properties of the
system as a whole. Although the different meaning of the word "complexity,,
are still in use in informatics, the mainstream of studies focus on interaction
and emerging processes while nonlinearity plays a decisive role. This in a sharp
contrast to a common specialization of classical research that means to split-up
general problems into their simpler components and then to study them as deep
as possible, hence try (not very often) to put together the parts and reconstruct
the whole [18]. In mechanics the concepts of complexity has been analysed by
Engelbrecht [8] with a focus on wave propagation. Here we want to elaborate
the idea that complex systems in Continuum Mechanics are strictly related to
a more general theory, as briefly described in Maugin ll2l, that we can obvi-
ously call Generalized continuum Theory. This theory is based on some cor-
nerstones like the introduction of internal structures at different scales and the
nonlinearity of the models which in other words means incorporating intrinsic
microstructural and nonlinear effects. Another approach, equivalently valid,
introduces the concept of internal variables [2]. Such variables are supposed to
describe the internal structure, but they are not observable. Roughly speaking,
they do not appear as kinematical (observable) variables, in most cases they do
not have inertia, but they appear in the stress-strain relations, or, ifthere exists a
free energy, this energy must depend also on internal variables. A typical case
in continuum mechanics, among many, is the case of materials with certain mi-
crostructure. In this case complexity means that we have different scales, with
several interaction processes which encompass many physically meaningful
phenomena. The pioneering work of Mindlin [13] is a basic reference, another
more recent general treatment can be found in Capriz [3], while many papers
have appeared where different particular and less particular cases have been
described (see the papers by Engelbrecht, Pastrone, cermelli, Porubov quoted
in the references). usually a microstructured body, as we shall see, is mod-
eled as a 3D solid with an internal structure at a different scale, which is apt to
describe the mechanical behaviour of solids with dislocations, polycrystalline
solids, ceramic composites, granular media, etc. one main aspect of such the-
ories is that they always take into account the nonlinearity of the materials, the
nonlocality and the interactions between micro- and macroscales. It is possible,
and useful, to develop also models with a hierarchy of microstructures, i.e. a
first level micro-structure which contains a second level micro-structure, and so
on, as done in Casasso and Pastrone [4], Engelbrecht et al [1 1]. But it is mean-
ingful also the case of concurrent micro-structures (see Berezovski et al tzl).
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In this paper we want to analyze the subject, recalling some main results in the
theory of complex microstructures, developing new results in the case of multi-
ple microstructures, exploiting hierarchical governing equations and analyzing
nonlinear wave propagation, which is crucial to put in evidence the weight of
the different scales and the interaction of micro- and macro-structures. To give
a simple idea of the different scales we can use this figure:
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Figure l: Reproduced from: T.S. Gates, G.M. Odegard, S.J.V. Frankland, T.C.
Clancy. Computational materials: Multi-scale modeling and simulation of
nanostructured materials, <<Composites Science and Technology>, 65, 2005,
pp.2416.

2. The field equations

The kinetic energy of a microstructured body is defined as a quadratic form
in the velocities i, ds, where r is the position vector describing the macrostruc-
ture, ds is the director apt to provide a description of some properties of
the microstructure as they act at the macroscopic level, dot means derivative
with respect to time t while the material point X is kept fixed, the notation
('),, : a(.) laX'i will mean derivatives with respect to the material coordinates
X'. Here and in the followinE H,K,... - I ,2,3,... )n, where n depends on the
type of microstructure we want to model; i, j : 1,2,3.

1T--
2

(pt .t + 2p't . dla * pH(ds .dr) (1)
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where p,gH ,?HK (which represent inertia terms) are functions of x and r if the
Eulerian description is used, and functions of X only in the Lagrangian formu-
lation. Z is a deflnite positive quadratic form. Without any loss of generality,
we can reduce it to a diagonal form

I

, : i(pt 
.t + f Kd" .d") e)

where p is the mass density and IHK represents the inertia form of the mi-
crostructure. If we deal with aLagrangian formulation, p and 1 are deflned on
the reference configuration, hence they are functions of X only.

Let us assume that the body admits a generalized stored energy density

W :WlrldH,dH l.X) (3)

which is related to the total mechanical power expended in any motion through
the equation

or:dw -dw o, *!Y ' Aw
= d, 

: 
dr ,,i'" - roro' * aarrd'' (+)

where t ,h, da , i111.1 arethe strain velocities uro p, + , g represent the
dr n dd.u dd.s i

generalized stresses.
We will take in account also conservative body forces such that there exists

a Potential 
wtr:wr,(r.dn,x)

and the power of the body forces is given by

, dW,, dWuPi:;.t+ffi.da.
We can derive the field equations via the usual variational principle, namely
requiring that the motions of the body in a ceftain interval of time [ro,/r] will
make the energy functional

E: [" Itr-w-wb)dvdt. (s)
Ja, Ja'

stationary in comparison with all admissible motions. The Euler-Lagrange
equations read

f far\ _dwn_dar
J \arr/r Er drdr
\ (aw \ aw dwt dar
[ \ril ) -;G - ad, 

: 
,ttad,

(6)
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In general, from a physical point of view, the microbody forces are different
from the macrobody forces, hence we can split W1, in two parts:

Wb : Wu'o"u (r,x) +Wii'"' (d,, X)

From a formal point of view, we can recover the fleld equations in a classical
form (Euler equations) introducing a set of forces, coupling moments, general-
ized forces and moments as follows:

(7)

.AWAW6': 
-. 

nt': 
-. 

B -dr.i ' dds.i

{ : -#, bfr"'" : -u\i;-

dwl'o""
Dr (s)

The general equation , with particular speciflcations of the number of directors
ds and the energy density W', allowed us to study many particular models of
solids with microstructures, in I and 2 dimensions, with interesting results in
the determination of nonlinear wave solutions, soliton like solutions, hierarchy
of waves, as one can see in references [5, 1 1, 6,9, 10, 15, 16].

3. One dimensional solid with hierarchical microstructure

We consider a one-dimensional microstructured model with two different
scale levels applied for the microstructure. Instead of the two-scale elastic
system, containing both macro- and microstructures, we introduce a material,
which is supposed to be a compound of a macrostructure, a first level mi-
crostructure and a second level microstructure at a much smaller scale. The
last may be interpreted as a nanostructure, to some extent (see [4], t11l,t14l).

In Figure 2 we give a sketch of the possible conflguration of a solid with
two levels microstructures.

:l ] a ar{ )-.1 t1.: c: l tt{ trli( 1ost1'u(:t111'c 1 rrirlostrrrctrrc 2

Figure 2: Two-levels microstructure
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Therefore, following the model, we deal with three different scalar func-
tions: the one for the macrostructure and two for the microstructures. one for
each scale level. The model of a material is the one-dimensional manifold, and
we consider the material coordinates in space x and in time t; and the functions
v : v(r, r) for the macrostructure, g : g(x, /) and ry : y(x, r) respectively for
the first and the second scale level in microscale. The macro body is supposed
to be purely elastic, and both the first and second level microstructures satisfy
the same generalized elasticity hypothesis as well, therefore the existence of an
internal strain energy is assumed.

A particular choice of the strain energy function I,7 defines different nonlin-
ear models, see [4]; in this paper we consider it in the following form:

w - tl2uv]+tlzBvl+1128$2 +tlzB2V +1lzctfr+ 
(e)

+ t I 2c2\rt+ v, (A 1 O + Azy) + AQry + BQ,y

which encompass both cases (two-levels and concurrent microstructures). This
function is the generalization of the strain energy function for nonlinear elastic
solids with one microstructure level to our case, where the introduction of the
cubic term v] represents the nonlinear behaviour of the matrix. If we consider
in (9) A : A2 :0 and B I 0 we have the hierarchical coupling.

The field equations can be derived as in [4] via a variational principle:

{r;*
: cnv,, * (Fr?), *Arg*
: C{py6 - Alva - Brg - Btlt,
: CzYu- Bqr- BzV

(10)

where o, B and Ai, B, Bi, Ci (i : 1 ,2) denote material constants.
To obtain the governing equation in dimensionless form, it is necessary to

introduce some suitable parameters and constants (see [5]) and two different
parameters 6,, l: 1,2, characterizing the ratio between the microstructure and
the wave length L, and €, accounting for small but finite elastic strain magni-
tude:

\: (hlL)2 . 62: (t2lL)2 g - 1,6 (( 1 (11)

where vs is the intensity of the initial excitation and the values h and 12 rep-
resent the size of the microstructural elements. Introducing the macrostrain
v : vx (the term "strain" is used for brevity only; in fact, it is the longitudinal
displacement gradient component, while expressions for genuine strains are
nonlinear with respect to v) and the dimensionless variables

u:vfvo, X : xlL, 7 : (cslL)t
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and substituting them into the previous system, we obtain the following cou-
pled di mensionless equations:

(12)

In formulas (12) the stared coefflcients can be easily obtaind from the un-
staned ones of eqs. (10). The slaving principle [11] can now be used for fur-
ther transformations. This procedure allows us to write one function in terms
of the other; on this way we can obtain the governing equation for the function
a(x,r) only. To this end, we determine the variable y in terms of rp and its
derivatives from (12)j. Then the equation (12\ can be used to express <p in
terms of derivatives of u. This expression will eventually be substituted into
equation (12)1 to obtain the one differential equation for u.

The resulting equation can be written as:

u rr * cxlu rr -f u2(u2) rr -l (a3u * l a+u rr) rrf (o5 ar, -l (x6u,r rr * a"t u rr) rr : 0
( 13)

where the cr; are constant coefficients explicitely defined in [5] and in the flnal
remark of this section.

The equation (13) above may be considered as a hierarchical equation in
terms of z, where two different levels of microstructure are expressed in five
different dispersive terms, and the higher order terms contain the parameters of
the second level of microstructure.

This scaling scheme that will be used also in the analysis below, follows [7]
where the strength of effects, not the rate ofchanges (slow and fast variables) is
scaled. In this way, the scaling of differential operators is constructed resulting
in the hierarchy of waves [ 1 9] .

We have obtained a 6-th order PDE that is hardly to be solved explicitly
in general case. However, we will lind some exact travelling wave solutions
of the PDE (13), when the equation can be reformulated in terms of the phase
variable z : x lVt in the corresponding ODE, as follows:

(V2 + u)t/rr) + a2(u2)(r') + (o, -lV2aa) rGV) + (cx, + y'gu +Vao,) a(vl) : 0
(14)

where 7 is the velocity of wave propagation.

0, Be . Ail,
u t, : 

,r6ux, 
- ;A \u') rr - ;A*,'

Ailyvll B'lE 6, .^-q: -';:, - "-ii.*. + il [ci,p,, - p1i.3q,, ]

B* rE 6,
v - - "-ilr^+ ; [cjv-- - p1,.dv,, ]
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Following the method introduced by Samsonov in 1171, upon the intro-
duction of z and integration twice with corresponding conditions at infinity
]zl -- - + tt,Ltt---+ 0 the equation (14) may be rewritten as the nonlinear ODE
of the 4th order:

a(IV) + arrlll') + b u2 + cu : O

where obviously:

a: (cr: *V2aa) ly; b: azlXt . : (cx, +Vt) lX; X,: os tVzu6+V4at 06)

Following the method described in [7], the exact solution to the ODE (15) in
terms of elliptic functions, containing only poles as the critical singularities,
can be found in the following form:

u:Md (r;gz,g:) *Sp(x;g2.g,)+K (17)

where the coeflicients M , S, K and invariants g, of the Weierstrass elliptic func-
lion p are deflned in f5l.

In the appropriate limit the Weierstrass elliptic function p may be furlher
reduced to the elliptic Jacobi cn- function and, in due course, to the bounded
solution u0 in terms of cosh-2 function, i.e., to th.e solitary wave solution, as

follows:

Lto : scosh a(r) *4 cosh-2( x) -t p;

-18928 +3640a-31a2

(1-5)

P:-clb:
501b

(1 8)
which has a form of the so called "mexican hat". Figure 3 provides two graph-
ical examples of the solutions for different values of the parameter b.
Remark
The approach used to obtain these solutions is similar to that introduced and
grounded in [7], and can be applied to explicitly solve different higher order
ODE, e.g., the 5th order KdV and the 5th order mKdV equations.

In the lirst step from (12)3 the expansion

4;\/6 A;r/526u ,^. .- a lV- -ffV^ LCjq,,' - P1:cdq^,,1

is obtained. Upon substitution into (12)2, which also is to be expanded, this
yields

Atvo 61A1r's ,-. ^ r. J ., 6iA rlA')2v1 ,^.a---!u- I J 
[Cir,, -p/icjrr,,]-- t(.a,,,.- plzc[,,,^,,)' Bt Bi L I ^\ I I u //r BiB', L --'xY\\

140(52 + a\:q:#: s:-8401b.' 13b
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Figure 3: a : -8, b : -1.5 for the figure on the left, a : -8, b :*1.5 for the
figure on the right

Finally this expression is inserled in (12)1 resulting in the partial differential
equation

u " 
: (*#)'**ffi'"'" ffi,lciu**- pric[u,,),,t

, 6)AllBr )2v1*;rffid Lci,rr - QI),t ,,),*,r

4. Concurrentmicrostructures

Instead of a hierarchy of microstructures, one can be interested in concur-
rent microstructures, as introduced in [2), namely in two, or more, microstruc-
tures which act at the same scale level and interact with the macrostructure as
well, as illustrated in Figure 4.
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Figure 4: Concurrent microstructures

We can obtain the Iields equations as done before considering B : 0, A + 0.

Hence the fie1d equations read:

( Pru : o(Yrr + F(r?)' - Ath* - AzY*

{',9, : C(Qv1-A1va-Brq-AV (i9)

[ /rV,, : CzYu--Azvr-Bz.\t-Ag

where u", A;, Bi, Ci, An U: 1.2) denote material constants.
With the substitution volt : vb from (19)r we derive:

pvoun : u"ysltxl + $v2o@2) r, - Atgr, - AzV *r.

ffi
mlerstructure 3

(20)

Using the change of parameters already recalled in the previous Section we can

obtain the dimensionless equations

This svs

[ ry,,, : o#u*,.Y (,,) ** -Tr,,
I

1 
u,* * Ay : _.Ait psu + $ @il.,, - pr[,3s

I o* * Bzy : -A)t2vsu+ $ @;v,. - pl)cf,i

tem can be re-written in the simpler formal way:

ry, ,:a},r,.Yfu\*-Tr^^ A\tz
- -;v,,

L'

,rL (lciq,, - pt[riqB1q+AtY: -A],lpou+ b (Ciq,, - PIIrtq,,) (2t)

fi (c;vr, - ptiriv,,)

f 
u,,:c[1rl*, *F, (r')r, *o(zgr, *o(.r\i/^,

( r'q*Ary:6 t22l

I o**Bzv: Y

microslructure 1
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with the obvious meaning of the coefficients o1 and Bl and of the right-hand
terms in (22)z.t (D and V. Iff BBz- A1, * 0, the algebraic sysrem (22)z.t
admits a unique solution and <p and ry are linear combinations of @ and v.

Now we have two possibilities:
i) A: 0, the concurrent microstructures are fully independent. This case has

already been briefly studied in [2], where the equations for the macro and micro
structures have been obtained neglecting the cubic term in w. we can add here
that, using the slaving principle, one can reach an approximate equation in u
only:

P,g.8,,,, : lo1 -(Ait-t)2 r^- (A)1:)2.l ,, Fr8,,.,
L "' ' 

: 
I L: L2 " it )r'r*, 

- r* (rr2)^^ t23t

which is a well known nonlinear PDE widely studied elsewhere.
ii) A + 0, the microstructures are coupled. In a very similar way, we obtain

a leading equation of the type:

,,, - Ar^^:y fur),, (24)

where A briefly denotes the set of coefficients of a* analogous to the square
brackets in (23), but it contains A12, namely the coupling constant.

The approximation used to obtain (23) and (24) is very sharp, we can call it
zero order approximation. Using the slaving principle at the first order approx-
imation, namely, as done before, setting

q- 90f61<P,1...
V - Vo *61Yr 1...

we obtain from (21), with longer calculations, the 4th order pDE:

tr, l c\1tt rr + F, (r')rr t 6r (cr3ur, * a,+ttrr) rrf 62 (cx-52,, * ct6urr) r, : 0
(26)

where the coefficients cx,i can be explicitly evaluated in terms of the material
constants appearing in (21).

Equation (26) is clearly different from (13), since here we have two con-
curent microstructures acting at the same level, one is responsible of the term
6,(...),the second one ofthe term 6z(...), but in both cises the order ofthe
derivatives is the 4th. In (13), as remarked, we have a hierarchy of microstruc-
tures, at the lirst level corresponding to 4th order derivatives, the second level
to 6th order derivatives. The two terms 61(.. . ) and 6r(. . .) are coupled through

(2s)
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the coefficient A12 which appears in both terms. Obviously, if At2:0, the mi-
crostructures are independent and the two terms are uncoupled.

Technically, the reason is that in the actual strain energy function (??) does

not appear the term -Azg,Y which is in (9), related to the hierarchy of the
microstructures in that case, while here we have a "peer" coupling term A12<pp.

Equation (26) is very similar with the DDE, (3.16) in Samsonov [17], the

meaning of the coefflcients being obviously different. Hence we can follow
the same procedure. Introducing the phase variable z: x*Vt we obtain the

4th order PDE

(v2 + rl,1;u(II) + Fr (u2;tttl + 61 (6x3 +v2aa) u(rv) + 6, (cr, +v2a6) z(IV) : 0
(27)

By double integration and regrouping the last two terms we obtain the 2nd

order ODE

6, (cr, +vzua) * 62 (cxs +v2a6))u" +9r@') + (v2 +u1)u* c*t c2: g

(28)

This equation can be formally written, with obvious meaning of the coeffi-
cients, as

l'+u(u2)lcuacfi-fc2:Q
Multiplying by ut and integrating once more we have

)@)' 
: -lou' _ lr,'- czu- ct(z*)r1u+a

(2e)

(30)

In Samsonov U7l, Chapter 3 one can flnd an extensive analysis of equations
of this kind and we can apply here his conclusions too, namely that by means

of an appropriate choice of the invariants of the elliptic P-functions appearing
in the Weierstrass equation associated to (30) and appropriate P-function limits
in real axis, equation (30) can admit a discontinuous general travelling wave
solution that can be reduced to solitary wave and to cnoidal wave solution.

Indeed one can imagine higher order coupling terms introducing in I4z prod-
ucts of derivatives of g and ry, namely terms containing grty, Wq, qjr\rx, but
for need of brevity we do not go further in this direction.

5. Conclusions

The problem of the propagation of non linear waves in solids with different
internal structural scales is studied. The general model developed in [4] and

[ 4] has been used. In case of one microstructure only, a 6th order PDE is
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obtained and the hierarchy of waves is clearly obtained. using the same basic
model, the case of two concurrent microstructures is studied and by means of
the slaving principle one can reach meaningful approximate equations.

Such a general model is very fruitful because we can obtain many particular
cases and study the solution of equations which encompass different physical
situations. Moreover we can use simulation and numerical techniques and we
can study also 2D cases, as done in [ 16], where a good approximation of reality
has been obtained-
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