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Abstract. The response of many materials (metals, alloys, composites, etc) to external loading
may be essentially influenced by an existing or emerging internal structure at smaller scales which
must be taken into account. For this purpose the concept of dual internal variables can be used
in order to describe the effect of internal fields. In this paper it is shown that the dual internal
variable theory is sufficiently general to model cases like the micromorphic elasticity and the
influence of microtemperature. Based on the material (canonical) balance equations for material
momentum and energy, this approach extends the single internal variable theory. The resulting
governing equations are not limited by first-order reaction-diffusion equations, as it is typical for
the single internal variable theory. Hyperbolic governing equations for internal variables provide
the description of the interaction of waves at macro- and micro-levels.

1. Introduction

The observed complexity in the dynamic behaviour of solids is due to the fact that solids
are inherently microstructured. Internal structures appear at different length scales and often
coexist at more than one length scale within the same solid. The description of the microstructure
influence on the macromotion is therefore a necessary step for both theory and practice. However,
as it is pointed out [Kirchner and Steinmann 2005], ”there is no unique answer to the question
how the microstructure influence can be accounted for in a continuum mechanical model”. In
general terms, microstructures in elastic solids can be either natural or man-made. Man-made
microstructures are usually completely ordered (like laminates) and then their influence can be
taken into account by direct numerical computations by making use of well-defined geometry.
In contrast, the influence of disordered microstructures (both natural and man-made) leads to
certain internal fields, which affect the macroscopic behavior, and the modeling of these fields
may be an effective way to understand the complexity of such solids.

Over the past five decades, a number of advanced generalized continuum theories have been
introduced to take into account the influence of the structural inhomogeneities on the macro-
scopic behavior of materials (see overview in [Maugin 2011b]). The mathematical structure of
such theories [Capriz 1989] includes a coarse grained morphological descriptor introduced to
describe the morphology of the material element [Mariano and Stazi 2005], which represents
certain additional independent fields [Mariano 2002]. For example, considering the material el-
ement as a cell able to deform independently of the rest of the body, Mindlin [Mindlin 1964] in
fact introduced a second order symmetric tensor as a morphological descriptor. The relevant
continuum theory is called micromorphic [Eringen and Suhubi 1964].
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Recently, it is found that the time evolution laws for the averaged conserved dynamical
variables derived from a molecular dynamic model follow exactly the balance laws in a mi-
cromorphic continuum [Chen and Lee 2003a]. Moreover, a multiscale field theory has been
constructed for the concurrent atomic-continuum modeling of materials [Chen and Lee 2005,
Chen and Lee 2006]. The micromorphic theory is thus considered as the most successful top-
down formulation of a two-level continuum model, in which the deformation is composed of the
macroscopic continuous deformation and the internal microscopic deformation of the inner struc-
ture [Hirschberger, Kuhl and Steinmann 2007, Grammenoudis and Tsakmakis 2009, Forest 2009,
Wang and Lee 2010, Gonella, Greene and Liu 2011].

Alternatively, one can introduce internal variables to describe microstructural effects. Appli-
cation of internal variables to the description of microstructural influence on global motion
has a long history. As it is pointed out [Truesdell 1984], Duhem was the first who intro-
duced what are now called internal state variables. In 1940s, Bridgman proposed an intro-
duction of “a large scale thermodynamic parameter of state”[Bridgman 1943], which extends
the state space. The thermodynamic theory of internal variables [Coleman and Gurtin 1967]
had presupposed only first-order evolution equations for the internal variables and did not
include their gradients. Accounting for the gradients leads to the weakly nonlocal theory
[Maugin and Muschik 1994, Maugin 1999], which can be also enriched by the extra entropy flux
[Maugin 1990]. The comprehensive theory of the internal state variables is presented recently
[Maugin 2006].

Internal variables are usually responsible for dissipative processes and must satisfy only the
second law of thermodynamics. It is hoped that a few aggregate internal variables will adequately
describe the influence of a microstructure [Rice 1971, Muschik 1990, Maugin and Muschik 1994].
However, as it is noted by [Kirchner and Steinmann 2005], ”it is neither a priori known which
specific features of the microstructure characterize such a macroscopic internal variable, nor
whether the macroscopic behavior is described sufficiently accurately by such a quantity”.

At the same time, the recently developed concept of dual internal variables [Ván et al. 2008]
permits to retrieve the Mindlin micromorphic theory [Berezovski et al. 2011a] on the basis of
the material formulation of continuum mechanics [Maugin 1993, Maugin 2011a]. This means
that the dual internal variable approach is at least as powerful as the widely accepted micro-
morphic description. The material formulation takes internal variables into account naturally
and consistently. Moreover, the structure of the governing equations for the microfields ensues
directly from the Clausius-Duhem inequality, and not considered as granted like it is in the
multifields theories [Capriz 1989] or derived from the requirement of invariance of the external
power actions [Mariano 2002].

It is noted that the question how thermal effects should be taken into account in higher-order
theories need further analysis [Forest and Aifantis 2010]. In the developed dual internal variable
theory temperature effects can be included consistently [Berezovski et al. 2011b].

The objective of the present paper is to demonstrate how different models of internal struc-
ture are related to a systematic thermomechanical method of the description of internal fields
in solids, that we call the dual internal variables approach. This theory is the direct exten-
sion of the comprehensive single internal variable theory [Maugin 2006]. The theory is pre-
sented here in the tensorial form generalizing preliminary results in one-dimensional setting
[Berezovski et al. 2009a, Berezovski et al. 2009b].
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2. Thermomechanics with dual internal variables

2A. Piola-Kirchhoff formulation. The starting point in the formulation of the thermome-
chanics with dual internal variables is the standard continuum mechanics. To formulate the
balance laws of continuum mechanics, we consider the motion of a body as a time-parametrized
mapping χ, which connects a material point X in the reference configuration and its position x
in the actual configuration in Euclidean physical space,

x = χ(X, t). (2-1)

Accordingly, the deformation gradient is defined by

F =
∂χ

∂X

∣∣∣∣
t

= ∇Rχ. (2-2)

At any regular material point X in a continuous body in the presence of a body force f0 per unit
reference volume, the local balance laws in the so-called Piola-Kirchhoff formulation include (cf.
[Wang and Truesdell 1973, Maugin 1993, Maugin 2011a])
the mass conservation

∂ρ0
∂t

∣∣∣∣
X

= 0, (2-3)

the balance of linear momentum

∂(ρ0v)

∂t

∣∣∣∣
X

−DivRT = f0, (2-4)

and the energy conservation equation

∂(K + E)

∂t

∣∣∣∣
X

−∇R · (T · v −Q) = f0 · v. (2-5)

Balance laws (2-3)–(2-5) are complemented by the second law of thermodynamics [Maugin 1999]

∂S

∂t

∣∣∣∣
X

+∇R · S ≥ 0, S = (Q/θ) + J. (2-6)

Here ρ0 is the mass density in the reference configuration, v = ∂χ
∂t

∣∣∣
X

is the physical velocity,

T is the first Piola-Kirchhoff stress tensor, K = 1
2ρ0v

2 is the kinetic energy per unit reference
volume, E is the internal energy per unit reference volume, Q is the material heat flux, S is
the entropy density per unit reference volume, θ is the absolute temperature, S is the entropy
flux, and the ”extra entropy flux” J vanishes in most cases, but this is not a basic requirement,
d
dt =

∂
∂t

∣∣
X

or a superimposed dot denotes the material time derivative.

2B. Material (canonical) formulation. It is well known that balance laws (2-4)–(2-5) can be
represented in the so-called material (canonical) formulation [Maugin 1993, Maugin 2011a]. The
canonical form of the energy conservation for sufficiently smooth fields at any regular material
point X in the body has the form [Maugin 2006, Maugin and Berezovski 2008]

∂(Sθ)

∂t

∣∣∣∣
X

+∇R ·Q = hint, hint := T : Ḟ− ∂W

∂t

∣∣∣∣
X

. (2-7)

Here W = E − θS is the Helmholtz free energy function.
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Correspondingly, the canonical (material) momentum balance equation in the presence of a
body force f0 per unit reference volume is written as [Maugin 2006, Maugin and Berezovski 2008]

∂P

∂t

∣∣∣∣
X

−DivRb = f int + f ext + f inh, (2-8)

where the material momentum P, the material Eshelby stress b, the material inhomogeneity
force f inh, the material external (or body) force f ext, and the material internal force f int are
defined by

P := −ρ0v · F, b = − (LIR +T.F) , L = K −W, (2-9)

f inh :=
∂L

∂X

∣∣∣∣
expl

≡ ∂L

∂X

∣∣∣∣
fixed fields

=

(
1

2
v2

)
∇Rρ0 −

∂W

∂X

∣∣∣∣
expl

, (2-10)

f ext := −f0 · F, f int = T : (∇RF)
T − ∇RW |impl . (2-11)

Here the subscript notations expl and impl mean, respectively, the material gradient keeping the
fields fixed (and thus extracting the explicit dependence on X), and taking the material gradient
only through the fields present in the function, the ”dot” notation is used for the product of two
tensors.

The second law (2-6) multiplied by θ yields the Clausius-Duhem inequality

−
(
∂W

∂t
+ S

∂θ

∂t

)∣∣∣∣
X

+T : Ḟ+∇R · (θJ)− S · ∇Rθ ≥ 0. (2-12)

Canonical equations (2-7) and (2-8) are the most general equations for momentum and energy
we can write down without a specification of the full dependency of free energy [Maugin 2006,
Maugin and Berezovski 2008, Maugin 2011a]. These equation provide the basis of the descrip-
tion of a microstructured medium by means of the introduction of additional internal fields.

2C. Dual internal variables. The role of internal variables in continuum mechanics is de-
scribed [Maugin 1990, Maugin and Muschik 1994, Maugin 2006] bearing in mind dissipative
processes. As it was shown [Ván et al. 2008], an unified treatment of both dissipative and
non-dissipative internal processes is possible in the framework of dual internal variables theory.
This approach is an extension of the classical single internal variable theory. Moreover, the lim-
itation of governing equations to first-order ones only is avoided by the concept of dual internal
variables [Ván et al. 2008]. In what follows, the application of the dual internal variables to
thermomechanics [Berezovski et al. 2011a] is reminded shortly.

Thus, in the framework of the phenomenological continuum theory, it is assumed that the
influence of a microstructure on the overall macroscopic motion of a body can be taken into
account by the introduction of internal variables, which we associate with the integral distributed
effect of the microstructure. The free energyW depends (in addition to the deformation gradient
and temperature) on two internal variables, α and β, each of which is a second-order tensor,
and their gradients

W =W (F, θ,α,∇Rα,β,∇Rβ). (2-13)

The inclusion of gradients into the state space is related to a weak non-locality of the theory. In
this case, the equations of state are given by

T =
∂W

∂F
, S = −∂W

∂θ
, A := −∂W

∂α
, A := − ∂W

∂∇Rα
,

B := −∂W
∂β

, B := − ∂W

∂∇Rβ
.

(2-14)
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The main advantage of the material formulation of continuum mechanics is that the canonical
equations of momentum and energy keep their form [Berezovski et al. 2011a]

∂P

∂t

∣∣∣∣
X

−DivRb̃ = f th + f̃ intr,

∂(Sθ)

∂t

∣∣∣∣
X

+∇R · Q̃ = hth + h̃intr,

(2-15)

with the modified Eshelby stress tensor

b̃ = −(L1R +T.F−A : (∇Rα)
T − B : (∇Rβ)

T ), (2-16)

thermal source terms
f th = S∇Rθ, hth = Sθ̇, (2-17)

and intrinsic source terms

f̃ intr := Ã : ∇Rα+ B̃ : ∇Rβ, h̃intr := Ã : α̇+ B̃ : β̇. (2-18)

In the above equations the following definitions are used

Ã := −
(
∂W

∂α
−DivR

∂W

∂(∇Rα)

)
= A−DivRA, (2-19)

B̃ := −
(
∂W

∂β
−DivR

∂W

∂(∇Rβ)

)
= B−DivRB, (2-20)

S̃ = θ−1Q̃, Q̃ = Q−A : α̇− B : β̇. (2-21)

In this formulation the Eshelby stress complies with it role of grasping all effects presenting
gradients since the material gradients of internal variables play a role parallel to that of the
deformation gradient F.

2D. Governing equations for internal variables. Following the scheme originally developed
in [Maugin 1990] for materials with diffusive dissipative processes described by means of internal
variables of state, we chose the non-zero extra entropy flux in the form

J = −θ−1A : α̇− θ−1B : β̇. (2-22)

Dissipation inequality (2-12) is then reduced to

Φ = Ã : α̇+ B̃ : β̇ − S̃∇Rθ ≥ 0, (2-23)

and contains both intrinsic and thermal parts. The thermal part of this inequality can be
satisfied by the modification of the Fourier law [Berezovski et al. 2011b], which is nothing else
but the standard proportionality of the heat flux with respect to the temperature gradient

Q−A : α̇− B : β̇ = −a2∇Rθ. (2-24)

The intrinsic part of dissipation inequality (2-23) depends solely on internal fields

h̃intr := Ã : α̇+ B̃ : β̇ ≥ 0. (2-25)

The governing equations for the internal variables α and β yield from Eq. (2-25) as follows(
α̇

β̇

)
= R

(
Ã
B̃

)
, or

(
α̇

β̇

)
=

(
R11 R12

R21 R22

)(
Ã
B̃

)
, (2-26)

where components R11, ...,R22 of the linear operator R are dependent on state variables
[Gurtin 1996].
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2E. Remarks. The governing equations for the internal variables (2-26) complete the basic
theory of the thermomechanics with dual internal variables. Formally, this theory is the direct
extension of the comprehensive single internal variable theory [Maugin 2006]. This is a weakly
non-local theory in the material formulation enriched by the extra entropy flux similarly to
that in the single internal variable theory [Ván et al. 2008]. However, the introduction of the
additional internal variables may change the mathematical structure of the theory. As it was
demonstrated [Berezovski et al. 2011b], in addition to the dissipative part, the dual internal
variables contribute also into the reversible Poisson structure [Mielke 2011]. This is the origin
of hyperbolic governing equations for the dual internal variables that generalizes the internal
variable theory significantly.

The given formulation of the theory is certainly of a general character and should be specified
to describe a particular influence of an internal structure. We will demonstrate the ability of
the theory on certain examples focussing on the explicit form of governing equations for the
internal variables. The governing equations coupled with the balance of momentum and energy
constitute the corresponding continuum model with the influence of internal structure. Though
each particular case is characterized by an explicit form of the free energy, we will keep the free
energy as general as possible.

3. Example 1: Pure dissipative case

Representing the linear operator R as the sum of symmetric and skew-symmetric components
R = (R+RT )/2 + (R−RT )/2, i.e.,(

α̇

β̇

)
=

(
R11 (R12 +R21)/2

(R21 +R12)/2 R22

)(
Ã
B̃

)
+

+

(
0 (R12 −R21)/2

(R21 −R12)/2 0

)(
Ã
B̃

)
,

(3-1)

we can see that the symmetry of the linear operator R, which is equivalent to the Onsagerian
reciprocity relations R12 = R21, leads to the elimination of the antisymmetric part of the linear
operator R. In this case, we return to the classical situation, where internal variables are fully in-
dependent, dissipative, and governed by reaction-diffusion equations [Coleman and Gurtin 1967,
Maugin and Muschik 1994, Maugin 2006].

In fact, the governing equations for the internal variables in this case

α̇ = R11.Ã, β̇ = R22.B̃, (3-2)

automatically provide the non-negativity of the intrinsic part of dissipation inequality (2-25)

h̃intr := Ã : α̇+ B̃ : β̇ ≥ 0, (3-3)

if R11 and R22 are positive definite. Obtained reaction-diffusion-like equations

α̇ = R11.(A−DivRA), or β̇ = R22.(B−DivRB), (3-4)

can be found under different names in numerous applications. For example, if the free energy
depends on a scalar internal variable α as

W =W (..., α,∇Rα) = f(..., α) +
1

2
D(∇α)2, (3-5)



INTERNAL STRUCTURES AND INTERNAL VARIABLES IN SOLIDS 7

we arrive at the Ginzburg-Landau (or the Allen-Cahn) equation (cf. [Cross and Hohenberg 1993])

1

k
α̇ = D∇2α− f ′(α), (3-6)

where f ′(α) denotes the derivative with respect to α.
As we can conclude, the single internal variable theory is a particular case of the theory with

dual internal variables. In the case of a pure dissipative internal structure, there is no need
to go beyond the single internal variable theory. However, we have no reasons to assume the
symmetry of the linear operator R in the case of arbitrary internal structures.

4. Example 2: pure non-dissipative case

The pure non-dissipative case corresponds to the skew-symmetric matrix R, which implies
R11 = R22 = 0 and the Casimirian reciprocity relations R12 = −R21. The governing equations
for the dual internal variables are fully coupled

α̇ = R12.B̃ = R12. (B−DivRB) , (4-1)

β̇ = −R12.Ã = −R12. (A−DivRA) , (4-2)

and the dissipation h̃intr vanishes. In this case, the evolution of one internal variable is driven
by another one that manifests the duality between the internal variables.

To be more specific, let us consider a simple case with B = 0, which means that the free energy
function W is independent of ∇Rβ. Then governing equation for the first internal variable (4-1)
is reduced to

α̇ = R12.B. (4-3)

Assuming further a quadratic dependence of the free energy function with respect to the internal
variable β

B := −∂W
∂β

= −bβ, (4-4)

we reduce Eq. (4-3) even more

α̇ = −bR12.β. (4-5)

Substituting from Eq. (4-5) into Eq. (4-2), we arrive at a hyperbolic governing equation for the
primary internal variable α:

α̈ = (bR12.R12).Ã = (bR12.R12).

(
−∂W
∂α

+DivR
∂W

∂(∇Rα)

)
. (4-6)

To exemplify the latter, still sufficiently general governing equation, we need to identify the
abstract primary internal variable α with a certain well-known (micro)field variable. We will
demonstrate such a representation on the example of the Mindlin micromorphic theory
[Mindlin 1964].

4A. Mindlin micromorphic theory. In the framework of the Mindlin micromorphic theory
[Mindlin 1964], each material point is endowed with three translational degrees of freedom u and
a second order microdeformation tensor ψ with nine independent components. In the case of
centrosymmetric, isotropic materials, the equations of motion in terms of stresses [Mindlin 1964]
can be represented in the form

ρv̇ = div (σ + τ ) + f , (4-7)

I.ψ̈ = divµ+ τ +Φ, (4-8)
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where I is a microinertia tensor, f is the body force, and Φ is the double force per unit volume.
The corresponding stress tensors, namely, the Cauchy stress σ, the relative stress τ , and the
double stress µ

σ ≡ ∂W

∂ε
, τ ≡ ∂W

∂γ
, µ ≡ ∂W

∂κ
, (4-9)

are defined, respectively, as derivatives of the free energy with respect to the classical strain tensor
ε, the relative deformation tensor γ, and the microdeformation gradient κ [Mindlin 1964], where

ε ≡ 1

2

(
∇u+ (∇u)T

)
, γ ≡ ∇u−ψ, κ ≡ ∇ψ. (4-10)

The free energy density W is supposed to be a homogeneous, quadratic function of forty-two
variables ε,γ,κ [Mindlin 1964]. It should be noted that the balances of linear momentum both
at micro- and at macrolevel (Eqs. (4-7) and (4-8), respectively) are introduced independently.

4B. Rearrangement. As it is shown [Berezovski et al. 2011a], the constitutive relations in the
micromorphic Mindlin theory can be represented in terms of distortion∇u and microdeformation
tensor ψ. Accordingly, the stresses are represented as follows:

σ′ ≡ ∂W

∂∇u
, τ ′ ≡ ∂W

∂ψ
. (4-11)

The double stress remains unchanged. Equations of motion (4-7) and (4-8) then take on the
form [Berezovski et al. 2011a]

ρv̇ = divσ′ + f , (4-12)

I.ψ̈ = divµ− τ ′ +Φ, (4-13)

The change of the sign in the right hand side of governing equation for the microdeformation
(4-13) follows from opposite signs of γ and ψ (see Eq. (4-10)2).

4C. Microdeformation tensor as an internal variable. Now we consider the microdefor-
mation tensor ψ as an internal variable α and apply the formalism developed above. The
microdeformation gradient κ plays the role of the gradient of the internal variable α, and we
introduce a dual internal variable β in the same way as it is previously described. In the non-
dissipative case, the dual internal variable β is auxiliary and does not affect the calculation of
derivatives of free energy with respect to microdeformation and double stress. Therefore, the
governing equation for the internal variable α follows from Eq. (4-6)

α̈ = (bR12.R12).

(
−∂W
∂α

+Div
∂W

∂(∇α)

)
. (4-14)

Identifying the internal variable α with the microdeformation tensor ψ, the latter governing
equation takes on the form(

bR12.R12
)−1

.ψ̈ =

(
− ∂W

∂ψjk
+Div

∂W

∂(∇ψjk)

)
= divµ− τ ′. (4-15)

As one can see, governing equation for the microdeformation (4-15) is practically the same as
equation of motion at the microlevel (4-13) in the rearranged Mindlin theory. The external
double force cannot appear in the internal variable theory [Berezovski et al. 2011a]. It should
be noted that equation of motion (4-15) is not postulated, but it follows from the dissipation in-
equality for the chosen functional dependence of the free energy in the considered non-dissipative
case. Clearly, this approach can be applied to microstrain and micropolar theories (with corre-
sponding changes) since they are particular cases of the micromorphic theory [Eringen 1999].
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5. Example 3: a more general case (microtemperature effects)

Now we consider a more complicated case, including dissipative and non-dissipative contribu-
tions. We choose the matrix R in Eq. (2-26) as follows:

R =

(
0 R12

−R12 R22

)
, (5-1)

with the Casimirian reciprocity relations. The governing equations for the dual variables are
coupled

α̇ = R12. (B−DivRB) , (5-2)

β̇ = −R12. (A−DivRA) +R22. (B−DivRB) . (5-3)

Here the intrinsic part of the dissipation h̃intr is positive. Considering again the simple case
with the free energy function W independent of ∇Rβ and the quadratic dependence of the free
energy function with respect to the internal variable β, we again have for the primary internal
variable

α̇ = −bR12.β. (5-4)

Substituting from Eq. (5-4) into Eq. (5-3), we obtain the governing equation for the primary
internal variable α:

α̈−R22.(R12)−1α̇ = (bR12.R12).

(
−∂W
∂α

+DivR
∂W

∂(∇Rα)

)
, (5-5)

which is a Cattaneo-Vernotte-type hyperbolic equation [Joseph and Preziosi 1989]. As it was
shown by [Berezovski et al. 2011b] on the example of one-dimensional thermoelasticity, the pri-
mary internal variable α can be identified in this case with the microtemperature. In this
context, it is understood as a fluctuation of the macrotemperature due to the influence of the
existing microstructure. Governing equation (5-5) is coupled with canonical equations (2-15),

because the modified Eshelby tensor b̃ and entropy flux S̃ include contributions by internal
variables. In fact, energy conservation equation (2-15)2 can be represented in the form

θ
∂S

∂t

∣∣∣∣
X

+∇R · Q̃ = h̃intr. (5-6)

Due to definition of entropy (2-14)2, its time derivative can be calculated as

∂S

∂t

∣∣∣∣
X

= − ∂2W

∂t∂θ

∣∣∣∣
X

= − ∂2W

∂F∂θ

∣∣∣∣
X

: Ḟ− ∂2W

∂θ2

∣∣∣∣
X

θ̇, (5-7)

because internal variables are independent of temperature. Thus energy balance equation (5-6)
can be represented as

cθ̇ +∇R · Q̃ = θM : Ḟ+ h̃intr, (5-8)

with

c = −θ ∂
2W

∂θ2

∣∣∣∣
X

, M =
∂2W

∂F∂θ

∣∣∣∣
X

. (5-9)

The final form of the heat conduction equation follows from definition of Q̃ (2-21), modified
Fourier’s law (2-24), and expression for the intrinsic heat source (2-25)

cθ̇ = ∇2
Rθ + θM : Ḟ+ Ã : α̇+ B̃ : β̇. (5-10)

This means that the heat conduction equation is still parabolic, but coupled with the stress field
and internal variables. The equation of motion is the same as in the Piola -Kirchhoff formulation
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(2-4), but due to the definition of the stress in the dual internal variables theory (2-14)1, the
stress tensor may contain both thermal and internal parts depending on the constitutive rela-
tion, which is not imposed yet. The coupling between the equation of motion, energy balance
(5-10), and governing equation for internal variables (5-5) may induce a wave-like propagation
of the macrotemperature even in the case of a parabolic equation for the macrotemperature
[Berezovski et al. 2011b]. The process of wave interaction at micro- and macro-levels can be
described as follows. Microtemperature perturbations are induced by a macrodeformation due
to the heterogeneity in the presence of a microstructure. These perturbations, propagating with
finite speed, can induce, in turn, corresponding changes in macrotemperature. At last, the
appeared changes in macrotemperature affect macrodeformations once more, and so on.

6. Conclusions and discussion

To sum up, we have shown that the influence of the internal structure of materials under
external loading can be modeled by internal fields using the concept of dual internal variables.
As one can see, the dual internal variable theory is sufficiently general to comprise the micromor-
phic elasticity and the microtemperature influence in addition to classical single internal variable
reaction-diffusion-type applications. Based on the canonical balance equations for material mo-
mentum and energy, the weakly non-local dual internal variable approach leads to governing
equations for internal variables, which ensue directly from the dissipation inequality. The re-
sulting governing equations are not limited by first-order reaction-diffusion equations, as it is
typical for the single internal variable theory. Appeared hyperbolic governing equations provide
the description of the interaction of waves at macro- and micro-levels. In summary, the dual in-
ternal variables approach offers an unified description of dissipative and non-dissipative internal
processes in solids in the framework of continuum mechanics. In contrast to other theories, the
following features should be emphasized:

• Governing equations for internal variables are ensued from the dissipation inequality and,
therefore they are thermodynamically consistent.

• Governing equations for internal variables are not restricted by first-order differential
equations, i.e., they may include second-order derivatives responsible for wave motion.

• Boundary conditions for internal variables are determined by zero extra entropy flux at
a boundary, which is a natural condition for internal variables.

At the same time, the presented theory is not a theory of everything. It is difficult to expect that
the internal variable theory will describe, for example, volume double and couple forces that may
appear in the general micromorphic case, because they are external by definition. This theory
cannot handle any ”internal” field, which can be controlled at boundaries. Such a field should
be treated as an internal degree of freedom. In the corresponding case, the balance equations
for the internal field should be postulated or derived separately.

The dual internal variable theory is presented in the general framework of material formula-
tion of continuum mechanics without specifying the small strain approximation. However, the
example of non-dissipative micromorphic elasticity is presented following the original Mindlin
form with the small strain approximation to demonstrate explicitly the similarity of the structure
of governing equations for internal fields. The introduced microtemperature adheres the micro-
morphic approach [Forest and Aifantis 2010]. It can be interpreted physically as fluctuations
about the mean temperature. The microtemperature itself cannot produce essential influence,
but its gradients can do that [Forest and Amestoy(2008)]. The introduction of the microtem-
perature is accompanied by the modification of the Fourier law providing the coupling between
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macrotemperature and its fluctuations. The modification of the Fourier law yields from the
standard choice of the proportionality of the modified heat flux to the temperature gradient in
order to satisfy the thermal part of the dissipation inequality.

As for any high-order theory, the application of the described dual internal variables theory to
practical problems depends on the specification of the free energy function which involves many
material constants. There are several methods to determine the material constants such as the
classical homogenization [Nemat-Nasser and Hori 1993] or more recent asymptotic homogeniza-
tion methods [Peerlings and Fleck 2004, Fish and Fan 2008, Pindera et al. 2009].

[Chen and Lee 2003b] proposed an approach to determine the material constants for micro-
morphic elastic solids through the phonon dispersion relations obtained by atomistic calcula-
tions or experimental measurements. Later, [Zeng at al. 2006] extended the approach to de-
termine material constants in the nonlocal micromorphic theory. Similar approach is proposed
[Maranganti and Sharma 2007, Jakata and Every 2008] to determine coefficients of higher order
derivatives in strain-gradient elasticity. An attempt is made to solve the mathematically well-
posed inverse problems for determination of material parameters for micromorphic elasticity
[Janno and Engelbrecht 2011].

To be able to compare theoretical and experimental dispersion curves, the dispersive wave
equations for elastic solids with internal structure were retrieved, analyzed, and unified recently
[Berezovski et al. 2011]. It was also shown that for a medium consisting of more than one phase
of microstructure, additional internal variables are necessary in order to describe the local defor-
mation and yield more accurate dispersion curves [Huang and Sun 2008, Berezovski et al. 2010].
Clearly, the efforts to understand the influence of internal fields on macrobehavior lead us to
better understanding of mechanics of materials.

References

[Berezovski et al. 2011] A. Berezovski, J. Engelbrecht, and M. Berezovski, ”Waves in microstructured solids: a
unified viewpoint of modeling”, Acta Mech. 220 (2011), 349–363.

[Berezovski et al. 2009a] A. Berezovski, J. Engelbrecht, and G.A. Maugin, ”Internal variables and generalized
continuum theories”, pp. 149–158 in IUTAM Symposium on Progress in the Theory and Numerics of Con-
figurational Mechanics, edited by P. Steinmann, Berlin, Springer, 2009.

[Berezovski et al. 2009b] A. Berezovski, J. Engelbrecht, and G.A. Maugin, ”One-dimensional microstructure dy-
namics”, pp. 21–28 in Mechanics of Microstructured Solids: Cellular Materials, Fibre Reinforced Solids and
Soft Tissues, edited by J.-F. Ganghoffer and F. Pastrone, Berlin, Springer, 2009.

[Berezovski et al. 2011a] A. Berezovski, J. Engelbrecht, and G.A. Maugin, ”Generalized thermomechanics with
dual internal variables”, Arch. Appl. Mech. 81 (2011), 229–240.

[Berezovski et al. 2011b] A. Berezovski, J. Engelbrecht, and G.A. Maugin, ”Thermoelasticity with dual internal
variables”, J. Thermal Stresses 34 (2011), 413–430.

[Berezovski et al. 2010] A. Berezovski, J. Engelbrecht, and T. Peets, ”Multiscale modelling of microstructured
solids”, Mech. Res. Comm. 37 (2010), 531–534.

[Bridgman 1943] P.W. Bridgman, The Nature of Thermodynamics, Harvard University Press, Cambridge, MA,
1943.

[Capriz 1989] G. Capriz, Continua with Microstructure, Springer, Heidelberg, 1989.
[Chen and Lee 2003a] Y. Chen and J.D. Lee, ”Connecting molecular dynamics to micromorphic theory. (II).

Balance laws”, Physica A 322 (2003), 377–392.
[Chen and Lee 2003b] Y. Chen and J.D. Lee, ”Determining material constants in micromorphic theory through

phonon dispersion relations”, Int. J. Engng. Sci. 41 (2003), 871–886.
[Chen and Lee 2005] Y. Chen and J.D. Lee, ”Atomistic formulation of a multiscale theory for nano/micro

physics”, Phil. Mag. 85 (2005), 4095–4126.
[Chen and Lee 2006] Y. Chen and J.D. Lee, ”Conservation laws at nano/micro scales”, J. Mech. Mater. Struct.

1 (2006), 681–704.



12 J.ENGELBRECHT AND A.BEREZOVSKI

[Coleman and Gurtin 1967] B.D. Coleman and M.E Gurtin, ”Thermodynamics with internal state variables”, J.
Chem. Phys. 47 (1967), 597–613.

[Cross and Hohenberg 1993] M.C. Cross and P.C. Hohenberg, ”Pattern formation outside of equilibrium”, Rev.
Mod. Phys. 65 (1993), 851–1106.

[Engelbrecht et al. 2005] J. Engelbrecht, A. Berezovski, F. Pastrone, and M. Braun, ”Waves in microstructured
materials and dispersion”, Phil. Mag. 85 (2005), 4127–4141.

[Eringen 1999] A.C. Eringen, Microcontinuum Field Theories, vol.I, Springer, New York, 1999.
[Eringen and Suhubi 1964] A.C. Eringen and E. S. Suhubi, ”Nonlinear theory of simple microelastic solids I &

II”, Int. J. Engng. Sci. 2 (1964), 189–203, 389–404.
[Fish and Fan 2008] J. Fish and R. Fan, ”Mathematical homogenization of nonperiodic heterogeneous media

subjected to large deformation transient loading”, Int. J. Numer. Meth. Engng. 76 (2008), 1044–1064.
[Forest 2009] S. Forest, ”Micromorphic approach for gradient elasticity, viscoplasticity and damage”, J. Engng.

Mech. (ASCE) 135 (2009), 117–131.
[Forest and Aifantis 2010] S. Forest and E.C. Aifantis, ”Some links between recent gradient thermoelastoplasticity

theories and the thermomechanics of generalized continua”, Int. J. Solids Struct. 47 (2010), 3367–3376.
[Forest and Amestoy(2008)] S.Forest and M.Amestoy, ”Hypertemperature in thermoelastic solids”, C. R.

Mecanique 336 (2008) 347–353.
[Gonella, Greene and Liu 2011] S. Gonella, M. S. Greene, and W.K. Liu, ”Characterization of heterogeneous

solids via wave methods in computational microelasticity”, J. Mech. Phys. Solids, 59 (2011), 959–974.
[Grammenoudis and Tsakmakis 2009] P. Grammenoudis and Ch. Tsakmakis, ”Micromorphic continuum Part I:

Strain and stress tensors and their associated rates”, Int. J. Non-Linear Mech. 44 (2009), 943–956.
[Gurtin 1996] M.E. Gurtin, ”Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce

balance”, Physica D 92 (1996), 178–192.
[Hirschberger, Kuhl and Steinmann 2007] C.B. Hirschberger, E. Kuhl, and P. Steinmann, ”On deformational and

configurational mechanics of micromorphic hyperelasticity – Theory and computation”, Comput. Methods
Appl. Mech. Engrg. 196 (2007), 4027–4044.

[Huang and Sun 2008] G. L. Huang and C.T. Sun, ”A higher-order continuum model for elastic media with mul-
tiphased microstructure”, Mech. Adv. Mater. Struct. 15 (2008), 550–557,

[Jakata and Every 2008] K. Jakata and A.G. Every, ”Determination of the dispersive elastic constants of the
cubic crystals Ge, Si, GaAs, and InSb”, Phys. Rev. B 77 (2008), 174301.

[Janno and Engelbrecht 2011] J. Janno and J. Engelbrecht, Microstructured materials: inverse problems, Berlin,
Springer, 2011.

[Joseph and Preziosi 1989] D.D. Joseph and L. Preziosi, ”Heat waves”, Rev. Mod. Phys. 61 (1989), 41–73.
[Kirchner and Steinmann 2005] N. Kirchner and P. Steinmann, ”A unifying treatise on variational principles for

gradient and micromorphic continua”, Phil. Mag. 85 (2005), 3875–3895.
[Maranganti and Sharma 2007] R. Maranganti and P. Sharma, ”A novel atomistic approach to determine strain-

gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers
and the (Ir) relevance for nanotechnologies”, J. Mech. Phys. Solids 55 (2007), 1823–1852.

[Mariano 2002] P.M. Mariano, ”Multifield theories in mechanics of solids”, pp. 1-93 in Advances in Applied
Mechanics, edited by E. van der Giessen and T.Y. Wu, 38 (2002).

[Mariano and Stazi 2005] P.M.Mariano and F. L. Stazi, ”Computational aspects of the mechanics of complex
materials”, Arch. Comput. Meth. Engng. 12 (2005), 391–478.

[Maugin 1990] G.A. Maugin, ”Internal variables and dissipative structures”, J. Non-Equilib. Thermodyn. 15
(1990), 173–192.

[Maugin 1993] G.A. Maugin, Material Inhomogeneities in Elasticity, Chapman & Hall, London, 1993.
[Maugin 1999] G.A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviors, World Scientific, Singa-

pore, 1999.
[Maugin 2006] G.A. Maugin, ”On the thermomechanics of continuous media with diffusion and/or weak nonlo-

cality”, Arch. Appl. Mech. 75 (2006), 723–738.
[Maugin 2011a] G.A. Maugin, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics,

Chapman & Hall/CRC, Boca Raton, FL, 2011.
[Maugin 2011b] G.A. Maugin, ”A historical perspective of generalized continuum mechanics”, pp. 3–19 in Me-

chanics of Generalized Continua edited by H. Altenbach et al., Springer, Berlin, 2011.



INTERNAL STRUCTURES AND INTERNAL VARIABLES IN SOLIDS 13

[Maugin and Berezovski 2008] G.A. Maugin and A. Berezovski, ”Introduction to the thermomechanics of config-
urational forces”, Atti dell’Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e
Naturali LXXXVI (2008), C1S0801016, Suppl. 1, 17 pp.

[Maugin and Muschik 1994] G.A. Maugin and W. Muschik, ”Thermodynamics with internal variables”, J. Non-
Equilib. Thermodyn. 19 (1994), 217–249.

[Mielke 2011] A. Mielke, ”Formulation of thermoelastic dissipative material behavior using GENERIC”, Contin.
Mech. Thermodyn. 23 (2011), 233–256.

[Mindlin 1964] R.D. Mindlin, ”Micro-structure in linear elasticity”, Arch. Rat. Mech. Anal. 16 (1964), 51–78.
[Muschik 1990] W. Muschik, Aspects of Non-Equilibrium Thermodynamics, World Scientific, Singapore, 1990.
[Nemat-Nasser and Hori 1993] S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heteroge-

neous Materials, Elsevier, Amsterdam, 1993.
[Peerlings and Fleck 2004] R.H. J. Peerlings and N.A. Fleck, ”Computational evaluation of strain gradient elas-

ticity constants”, Int. J. Multiscale Comput. Engng. 2 (2004), 599–619.
[Pindera et al. 2009] M.-J. Pindera, H. Khatam, A.S. Drago, and Y. Bansal, ”Micromechanics of spatially uniform

heterogeneous media: A critical review and emerging approaches”, Composites, Part B 40 (2009), 349–378.
[Rice 1971] J. R. Rice, ”Inelastic constitutive relations for solids: an internal-variable theory and its application

to metal plasticity”, J. Mech. Phys. Solids 19 (1971), 433–455.
[Truesdell 1984] C. Truesdell, Rational Thermodynamics, second ed. Springer, New York, 1984.
[Ván et al. 2008] P. Ván, A. Berezovski, and J. Engelbrecht, ”Internal variables and dynamic degrees of freedom”,

J. Non-Equilib. Thermodyn. 33 (2008), 235–254.
[Wang and Lee 2010] X. Wang and J.D. Lee, ”Micromorphic theory: a gateway to nano world”, Int. J. Smart

Nano Mater. 1 (2010), 115–135.
[Wang and Truesdell 1973] C.-C. Wang and C. Truesdell, Introduction to Rational Elasticity, Noordhoff Interna-

tional Publishing, Leyden, The Netherlands, 1973.
[Zeng at al. 2006] X. Zeng, Y. Chen, and J.D. Lee, ”Determining material constants in nonlocal micromorphic

theory through phonon dispersion relations”, Int. J. Engng. Sci. 44 (2006), 1334–1345.

Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology,
Akadeemia Rd.21, Tallinn, 12618, Estonia

E-mail address: je@ioc.ee
URL: (Optional) home page

Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology,
Akadeemia Rd.21, Tallinn, 12618, Estonia

E-mail address: Arkadi.Berezovski@cs.ioc.ee


