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Abstract

The extension of the thermoelasticity theory by weakly non-local dual internal vari-

ables enriched by an extra entropy flux for the thermomechanical description of

the behavior of microstructured solids is presented. The internal variables take

into account the distributed effect of microdeformations or microtemperatures (and

their gradients) on the overall macroscopic behavior. The evolution equations for

microtemperatures can be hyperbolic, which can induce wave-like propagation for

macrotemperature due to the coupling of equations.
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1 Motivation

Thermoelasticity is a generic multiphysics and multiscale theory because it com-

bines mechanical and thermal phenomena, each of which has its own time scale. In

(quasi)statics, the exchange of heat with the environment is complete during a slow

increase of loading and the resulting deformation. A constant temperature over the

entire solid is kept, called the temperature of the natural state. In contrast, in dy-

namics the heat exchange due to heat conduction is very slow. If there are no heat

sources within the solid, then we arrive at the conditions of an adiabatic process.

In the theory of thermal stresses, the effect of the change of deformation on the

deviation of temperature is neglected. The equation of heat conduction is derived

without taking the body deformation into account. The theory of coupled ther-

moelasticity unifies differential equations for all possible thermodynamic processes

[1, 2].

The response of many materials of engineering interest (e.g., metals, alloys, gran-

ular materials, composites, liquid crystals, polycrystals) to external loading is often

influenced by an existing or emergent microstructure (e.g., phases in multiphase

materials, voids, microcracks, dislocation substructures, texture). In general, the

components of such a microstructure have different material properties, resulting in

a macroscopic material behavior which is highly anisotropic and inhomogeneous.

Prediction of the thermoelastic behavior of such materials is not an easy task,

because in addition to the generalized continuum description extending the con-

ventional continuum mechanics for incorporating intrinsic microstructural effects in
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the mechanical behavior of materials [3–6], a more general description of thermal

processes is also needed.

Generalized heat conduction means usually a hyperbolic heat propagation with

the Cattaneo-Vernotte or Jeffreys constitutive relation for the heat flux [7–10], which

reflects in generalization of thermoelasticity [9, 10] based on earlier studies by Lord

and Shulman [11] and Green and Lindsay [12]. The ”thermoelasticity with finite

wave speed” [10] as well as the thermal displacement variable theory by Green and

Naghdi [13–15] deal with the macroscopic temperature without any reference to

microstructure. From another side, the combination of generalized continua theories

of Eringen [6] or Green and Naghdi [13] with microtemperatures in the spirit of Grot

[16] presented in the series of papers by Ieşan and his co-authors [17–19] is an exotic

exercise due the difficulty in the interpretation of the microtemperature as a vector.

It is well known that in the conventional thermoelasticity the free energy den-

sity is a function of the deformation gradient and temperature only and cannot

depend on the temperature gradient [20, 21]. However, in the presence of varying

temperature fields at the microstructure level, temperature gradient effects on the

thermomechanical response of the material are expected due to the microheteroge-

neous nature of materials. In order to take such effects into account a thermoelastic

constitutive equation for second grade media was proposed by Cardona, Forest and

Sievert [22], and the gradient of entropy model was developed [23]. However, the

resulting heat conduction equation deviates from the classical heat equation only by

an additional contribution which is proportional to the Laplacian of the temperature

rate of change.

Internal variable approach was always an alternative framework for the contin-

uum modeling of materials (cf. [24]). The thermodynamic theory of internal vari-
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ables presented by Coleman and Gurtin [25] had presupposed first-order evolution

equations for the internal variables and did not include their gradients. Accounting

for the gradients leads to the weakly nonlocal theory [26, 27], which can be also

enriched by the extra entropy flux [28]. The complete theory of the internal state

variables is presented recently by Maugin [29, 30]. Moreover, the limitation of evo-

lution equations by only first-order ones is got over by the concept of dual internal

variables [31]. As it was demonstrated [32–34], this concept allows to recover the

structure of Cosserat, micromorphic, and second gradient elasticity theories in a

natural way. It should be noted, however, that the mentioned results are obtained

in the isothermal setting. However, temperature can be also treated as an internal

variable (cf. [35]).

In this paper, the desired extension of the dual internal variable approach to the

thermoelastic description of microstructured solids is presented. It appears that in

the framework of the internal variables theory it is possible to obtain a hyperbolic

evolution equation for microtemperatures keeping the parabolic evolution equation

for the macrotemperature. Effects of microtemperature gradients exhibit themselves

on the macrolevel due to the coupling of equations of macromotion and evolution

equations for macro- and microtemperatures.

The most suitable framework for the generalization of continuum theory by

weakly non-local dual internal variables enriched by an extra entropy flux is the ma-

terial formulation of thermomechanics [36]. Therefore, basic definitions of canonical

thermomechanics [36] are recalled in the next section of the paper. This is followed

by the reminder of the conventional theory of single internal variable of state [29, 30].

Then dual variables are introduced and evolution equations for them are derived.

The comparison with the GENERIC approach [37] shows that the dual internal
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variables can provide a contribution in both reversible and dissipative processes in

a microstructured medium. As an example, the one-dimensional thermoelasticity

theory is considered in detail.

2 Canonical thermomechanics

The starting point for the representation of the dual internal variable theory is the

canonical thermomechanics or the thermomechanics in material formulation [36].

Considering the motion of a body as a time-parametrized mapping χ connecting

a material point X with Cartesian coordinates (X1, X2, X3) in the reference con-

figuration and its position x with Cartesian coordinates (x1, x2, x3) in the actual

configuration in Euclidean physical space,

x = χ(X, t), or xi = χ(Xk, t), i, k = 1, 2, 3, (1)

we can write the local balance laws in so-called Piola-Kirchhoff formulation at any

regular material point X in a continuous body in the presence of a body force f0

per unit reference volume (cf. Maugin [36]) as the mass conservation

∂ρ0
∂t

∣∣∣∣
X

= 0, (2)

the balance of linear momentum

∂(ρ0v)

∂t

∣∣∣∣
X

−DivRT = f0, (3)

and the energy conservation equation

∂(K + E)

∂t

∣∣∣∣
X

−∇R · (T · v −Q) = f0 · v. (4)

The balance laws (2)-(4) are complemented by the second law of thermodynamics

∂S

∂t

∣∣∣∣
X

+∇R · S ≥ 0, S = (Q/θ) + J. (5)
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Here ρ0 is the mass density in the reference configuration, v = ∂χ
∂t

∣∣∣
X

is the physical

velocity, T is the first Piola-Kirchhoff stress tensor, K = 1
2ρ0v

2 is the kinetic energy

per unit reference volume, E is the internal energy per unit reference volume, Q is

the material heat flux, S is the entropy density per unit reference volume, θ is the

absolute temperature, S is the entropy flux, and the ”extra entropy flux” J vanishes

in most cases, but this is not a basic requirement, d
dt = ∂

∂t

∣∣
X

or a superimposed

dot denotes the material time derivative. Accordingly, the deformation gradient is

defined by

F =
∂χ

∂X

∣∣∣∣
t

= ∇Rχ. (6)

The so-called theorem of the kinetic energy is obtained be multiplying Eq. (3) by

v:

∂K

∂t

∣∣∣∣
X

−∇R · (T · v) +T : Ḟ− f0 · v = 0. (7)

The combination of the theorem of kinetic energy (7) with the energy conservation

(4) results in the so-called theorem of internal energy:

∂E

∂t

∣∣∣∣
X

−T : Ḟ+∇R ·Q = 0. (8)

Introducing the Helmholtz free energy function by W = E− θS, we can rewrite Eq.

(8) in the canonical form of the energy conservation for sufficiently smooth fields at

any regular material point X in the body [29, 30]

∂(Sθ)

∂t

∣∣∣∣
X

+∇R ·Q = hint, hint := T : Ḟ− ∂W

∂t

∣∣∣∣
X

. (9)

The right-hand side of Eq. (9)1 is formally an internal heat source.

Correspondingly, the canonical (material) momentum balance equation in the

presence of a body force f0 per unit reference volume can be obtained by multiplying
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the balance of linear momentum (3) by the deformation gradient [29, 30]. The result

is

∂P

∂t

∣∣∣∣
X

−DivRb = f int + f ext + f inh, (10)

where the material momentum P, the material Eshelby stress b, the material in-

homogeneity force f inh, the material external (or body) force f ext, and the material

internal force f int are defined by

P := −ρ0v · F, b = − (LIR +T.F) , L = K −W, (11)

f inh :=
∂L

∂X

∣∣∣∣
expl

≡ ∂L

∂X

∣∣∣∣
fixed fields

=

(
1

2
v2

)
∇Rρ0 −

∂W

∂X

∣∣∣∣
expl

, (12)

f ext := −f0 · F, f int = T : (∇RF)
T − ∇RW |impl . (13)

Here the subscript notations expl and impl mean, respectively, the material gradient

keeping the fields fixed (and thus extracting the explicit dependence on X), and

taking the material gradient only through the fields present in the function, the

”dot” notation is used for the product of two tensors.

The second law (5) multiplied by θ yields the celebrated Clausius-Duhem in-

equality

−
(
∂W

∂t
+ S

∂θ

∂t

)∣∣∣∣
X

+T : Ḟ+∇R · (θJ)− S · ∇Rθ ≥ 0. (14)

Now we are equipped for the introduction of internal variables. It may be instructive

to remind first the theory with a single internal variable recently presented in a

comprehensive form by Maugin [29, 30].

3 Single internal variable

Up to now the microstructure was not specified. It can be prescribed by the speci-

fication of location, shape, and properties of inclusions, as, for example, in the case
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of periodic structures. If the microstructure is irregular, such a prescription is im-

possible. In the framework of the phenomenological continuum theory it is assumed

that the influence of the microstructure on the overall macroscopic behavior can be

taken into account by the introduction of an internal variable φ which we associate

with the distributed effect of the microstructure.

Formally, the introduction of an internal variable means that the state space of a

material point is described not only by the deformation gradient and temperature,

but also by the internal variable and its gradient. Usually, the introduction of an

internal variable is made without the specification of its tensorial nature. To be more

precise, we will consider the internal variable of state α as a second-order tensor.

Then the free energy per unit volume W is specified as the general sufficiently

regular function

W =W (F, θ,α,∇Rα). (15)

The corresponding equations of state are given by [29, 30]

T =
∂W

∂F
, S = −∂W

∂θ
, A := −∂W

∂α
, A := − ∂W

∂∇Rα
. (16)

The presence of internal variables leads to a modification of the governing balance

laws. To be consistent, let us consider first the dissipation inequality (14), which is

represented as

Φ = (A−DivRA ) : α̇+∇R · (A : α̇+ θK)− S · ∇Rθ ≥ 0. (17)

Following Maugin [28], we select the extra entropy flux in order to eliminate the

divergence term in Eq. (17)

J = −θ−1A : α̇. (18)
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Such a choice results in the canonical equations of momentum and energy in the

form [29, 30]

∂P

∂t

∣∣∣∣
X

−DivRb̃ = f th + f̃ intr, (19)

∂(Sθ)

∂t

∣∣∣∣
X

+∇R · Q̃ = hth + h̃intr. (20)

Here the introduced thermal source terms involve only temperature

f th = S∇Rθ, hth = Sθ̇, (21)

whereas ”intrinsic” source terms are determined by the internal variable

f̃ intr := Ã : (∇Rα)T , h̃intr := Ã : α̇. (22)

The modified Eshelby stress tensor

b̃ = −(LIR +T.F− A : (∇Rα)T ), (23)

includes all effects presenting gradients since the material gradient of α plays a role

parallel to that of the deformation gradient F. Remaining modifications are defined

as follows [29, 30]

Ã ≡ −δαW := −
(
∂W

∂α
−DivR

∂W

∂(∇Rα)

)
= A−DivRA , (24)

S̃ = θ−1Q̃, Q̃ = Q− A : α̇, (25)

and the dissipation inequality is represented as

Φ = Ã : α̇− S̃∇Rθ ≥ 0. (26)

The main advantage of the use of the material formulation of thermomechanics is

the conservation of the form of the canonical balance laws and clear separation of

thermal and intrinsic dissipation. If we assume that intrinsic dissipation is still
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independent of temperature gradient, then we are forced to modify the Fourier’s

law

Q− A : α̇ = −a2∇Rθ. (27)

The standard choice to provide the non-negativity of the intrinsic part of the dissi-

pation inequality (26)

h̃intr = Ã : α̇ ≥ 0, (28)

leads to the evolution equation for the internal variable in the form

α̇ = kÃ , k ≥ 0. (29)

The obtained reaction-diffusion-like equation

α̇ = k(A−DivRA ), (30)

can be found under different names in numerous applications. For example, if the

free energy depends on a scalar internal variable as

W =W (..., α,∇Rα) = f(..., α) +
1

2
D(∇α)2, (31)

we arrive at the Ginzburg-Landau (or the Allen-Cahn) equation (cf. Cross and

Hohenberg [38])

1

k
α̇ = D∇2α− f ′(α), (32)

where f ′(α) denotes the derivative with respect to α.

If we identify the internal variable with microtemperature, then we can see that

its evolution is described by a parabolic equation similarly to the macroscopic heat

conduction equation. The influence of a microstructure is exhibited only by the

distinction in heat conduction coefficients at macro- and microlevels.
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A more general description of the thermoelastic behavior of microstructured

solids can be provided by the dual internal variable approach [31], as demonstrated

in the isothermal situation [32–34]. The introduction of an additional internal vari-

able extends not only the state space, but also the structure of the corresponding

theory.

4 Dual internal variables

The generalization of the internal variable theory to the case of two internal variables

is straightforward [34]. Let us consider the free energy W as a function of two

internal variables, α and β, each of which is a second-order tensor

W =W (F, θ,α,∇Rα,β,∇Rβ). (33)

In this case, the equations of state are given by

T =
∂W

∂F
, S = −∂W

∂θ
, A := −∂W

∂α
, A := − ∂W

∂∇Rα
,

B := −∂W
∂β

, B := − ∂W

∂∇Rβ
.

(34)

We include into consideration the non-zero extra entropy flux according to the case

of the single internal variable

J = −θ−1A : α̇− θ−1B : β̇. (35)

The canonical equations of momentum and energy keep their form

∂P

∂t

∣∣∣∣
X

−DivRb̃ = f th + f̃ intr,

∂(Sθ)

∂t

∣∣∣∣
X

+∇R · Q̃ = hth + h̃intr,

(36)

with the modified Eshelby stress tensor

b̃ = −(L1R +T.F− A : (∇Rα)T − B : (∇Rβ)
T ), (37)
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and intrinsic source terms

f̃ intr := Ã : ∇Rα+ B̃ : ∇Rβ, h̃intr := Ã : α̇+ B̃ : β̇. (38)

In the above equations the following definitions are used

Ã ≡ −δαW := −
(
∂W

∂α
−DivR

∂W

∂(∇Rα)

)
= A−DivRA , (39)

B̃ ≡ −δβW := −
(
∂W

∂β
−DivR

∂W

∂(∇Rβ)

)
= B−DivRB, (40)

S̃ = θ−1Q̃, Q̃ = Q− A : α̇− B : β̇, (41)

which are similar to those in the case of the single internal variable.

The corresponding dissipation inequality

Φ = Ã : α̇+ B̃ : β̇ − S̃∇Rθ ≥ 0, (42)

again contains both intrinsic and thermal parts. The thermal part of this inequality

can be satisfied by the modification of Fourier’s law

Q− A : α̇− B : β̇ = −a2∇Rθ. (43)

The intrinsic part of the dissipation inequality (42) has the form

h̃intr := Ã : α̇+ B̃ : β̇ ≥ 0. (44)

The introduction of the second internal variable results in a more general form of

evolution equations for the internal variables α and β, which in accordance with

Eq. (44) are chosen asα̇

β̇

 = R

Ã

B̃

 , or

α̇

β̇

 =

R11 R12

R21 R22


Ã

B̃

 , (45)

where components R11, ...,R22 of the linear operator R are dependent on state

variables [39].
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Representing the linear operatorR as the sum of symmetric and skew-symmetric

components R = (R+RT )/2 + (R−RT )/2, i.e.α̇

β̇

 =

 R11 (R12 +R21)/2

(R21 +R12)/2 R22


Ã

B̃

+

+

 0 (R12 −R21)/2

(R21 −R12)/2 0


Ã

B̃

 ,

(46)

we can see that the symmetry of the linear operator R, which is equivalent to the

Onsagerian reciprocity relations R12 = R21, leads to the elimination of the anti-

symmetric part of the linear operator R. In this case, we return to the classical

situation, where internal variables are fully independent, dissipative, and governed

by reaction-diffusion equations. However, we have no reasons to assume the sym-

metry of the linear operator R in the case of arbitrary internal variables.

In the case of linear elasticity without body forces, we can represent the equations

of motion and energy in the form of a dissipative Hamiltonian system (cf. Mielke

[40]) introducing the displacement vector u and momentum p = ρ0u̇

u̇

ṗ

α̇

β̇

θ̇


=



0 1 0 0 0

−1 0 0 0 0

0 0 −R11 −R12 0

0 0 −R21 −R22 0

0 0 0 0 −Λ
θ0





δpH

δuH

δαH

δβH

δθH


+



0

0

0

0

F (θ − θ0) + h̃intr


, (47)

where variational derivatives of the ”Hamiltonian” H = E − θS = K + U − θS =

K +W are defined as

δwH = ∂wH −DivR (∂∇wH) , δθH = ∂θH, (48)

Λ is a heat conduction operator, F is a coupling operator, w denotes state variables

u,p,α,β, and θ0 is the reference temperature and only small deviations from it are
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considered.

If we decompose the matrix of the system of Eqs. (47) into symmetric and

antisymmetric parts

0 1 0 0 0

−1 0 0 0 0

0 0 R11 R12 0

0 0 R21 R22 0

0 0 0 0 −Λ
θ0


= L−N =

=



0 1 0 0 0

−1 0 0 0 0

0 0 0 −R12−R21

2 0

0 0 −R21−R12

2 0 0

0 0 0 0 0


−



0 0 0 0 0

0 0 0 0 0

0 0 R11 R12+R21

2 0

0 0 R21+R12

2 R22 0

0 0 0 0 Λ
θ0


,

(49)

then we can see that the system of equations (47) has a metriplectic structure [40]

Ż = (L(Z)−N(Z))δH(Z) + F (Z), (50)

where Z = (w, θ), the antisymmetric part L corresponds to a Poisson structure,

and the symmetric and positive semidefinite part N defines a dissipation structure.

As shown by Mielke [40], the metriplectic formulation (50) is a reduced form of

the GENERIC formulation [37]

Ż = L(Z)DE (Z) +M(Z)DS (Z) + F (Z), (51)
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with the energy functional E and the entropy functional S given as follows [40]:

E (u,p,α,β, θ) =∫
Ω
E(X,u(X),∇u(X),p(X),α(X),∇α(X),β(X),∇β(X), θ(X))dX,

with E(X,u,∇u,p,α,∇α,β,∇β, θ) =
p2

2ρ0
+ U(X,∇u,α,∇α,β,∇β, θ),

S (u,α,β, θ) =

∫
Ω
S(X,∇u(X),α(X),∇α(X),β(X),∇β(X), θ(X))dX,

(52)

and

H = E − θ0S , H (w,∇w, θ) =
∫
Ω
H(w(X),∇w(X), θ(X))dX, (53)

DwH = δwH, DθH = δθH, N = − 1

θ0
M. (54)

As one can see, the contribution of internal variables into the reversible Poisson

structure is possible only in the case of dual internal variables, whereas a single

internal variable is involved exclusively in the dissipation structure.

In order to demonstrate how particular forms of evolution equations for internal

variables can be derived we consider the example of one-dimensional thermoelastic-

ity.

5 One-dimensional thermoelasticity in solids

with microstructure

The one-dimensional motion of the thermoelastic conductors of heat is governed by

local balance laws for linear momentum and energy (no body forces)

(ρ0v)t − σx = 0, (55)

(
1

2
ρ0v

2 + E

)
t

− (σv −Q)x = 0, (56)
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and by the second law of thermodynamics

St +

(
Q

θ
+ J

)
x

≥ 0. (57)

Here σ is the one-dimensional stress, v is the particle velocity, Q is the heat flux,

E is the internal energy, S is the entropy, θ is temperature, J is the extra entropy

flux, subscripts denote derivatives.

The canonical energy equation is derived from Eq. (56) by introducing the free

energy per unit volume W := E − Sθ and taking into account the balance of linear

momentum (55)

(Sθ)t +Qx = hint, hint := σεt −Wt. (58)

Multiplying Eq. (55) by ux we then check that Eq. (55) yields the following canon-

ical balance of material momentum (cf. [36])

Pt − bx = f int + f inh, (59)

where the material momentum P , the material Eshelby stress b, the material inho-

mogeneity force f inh, and the material internal force f int are defined by [36]

P := −ρ0utux, b := −
(
1

2
ρ0v

2 −W + σε

)
, (60)

f inh :=

(
1

2
v2
)
(ρ0)x − Wx|expl , f int := σuxx − Wx|impl . (61)

In the case of non-zero extra entropy flux, the second law of thermodynamics gives

− (Wt + Sθt) + σεt + (θJ)x −
(
Q

θ
+ J

)
θx ≥ 0, (62)

where ε = ux is the one-dimensional strain measure.

5.1 Dual internal variables

Now we suppose that the free energy depends on the internal variables φ,ψ and

their space derivatives W =W (ux, θ, φ, φx, ψ, ψx). Then the constitutive equations
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follow

σ :=
∂W

∂ux
, S = −∂W

∂θ
, τ := −∂W

∂φ
, η := −∂W

∂φx
,

ξ := −∂W
∂ψ

, ζ := −∂W
∂ψx

.

(63)

We include into consideration the non-zero extra entropy flux according to Eq. (35)

J = −θ−1ηφt − θ−1ζψt. (64)

The canonical equations of momentum and energy follow as

Pt − b̃x = f th + f̃ intr, (65)

(Sθ)t + Q̃x = hth + h̃intr, (66)

with appropriate modifications

b̃ =−
(
1

2
ρ0v

2 −W + σux − ηφx − ζψx

)
,

Q̃ =Q− ηφt − ζψt,

(67)

where thermal and intrinsic source terms are determined as follows

f th := Sθx, f̃ intr := (τ − ηx)φx + (ξ − ζx)ψx

hth := Sθt, h̃intr := (τ − ηx)φt + (ξ − ζx)ψt.

(68)

The latter means that the dissipation inequality reduces to

Φ = (τ − ηx)φt + (ξ − ζx)ψt −
(
Q− ηφt − ζψt

θ

)
θx ≥ 0. (69)

If we assume that intrinsic dissipation is still independent of temperature gradient,

then we are forced to modify the Fourier’s law

Q− ηφt − ζψt = −kθx, (70)

to satisfy the thermal part of the dissipation inequality.

The remaining intrinsic part of the dissipation inequality (69) can be satisfied by

several means. We consider three main cases for choosing the evolution equations

for internal variables:
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1. non-dissipative case (internal variables contribute only to the reversible part

of the metriplectic structure (50));

2. fully dissipative case (internal variables contribute only to the irreversible dis-

sipative part of the metriplectic structure (50));

3. intermediate case (internal variables contribute to both the reversible and the

irreversible dissipative parts).

It is easy to see, that the choice

φt = R(ξ − ζx), ψt = −R(τ − ηx), (71)

where R is an appropriate constant, leads to zero intrinsic dissipation, because in

this case the first two terms in the right-hand side of the dissipation inequality (69)

cancel one another. In this non-dissipative case the two evolution equations (71)

express the duality between internal variables: one internal variable is driven by

another one and vice versa [32, 33]. The corresponding conductivity matrix R is

antisymmetric.

The fully dissipative case corresponds to the choice of evolution equations in

the form

φt = R1(τ − ηx), R1 > 0, ψt = R2(ξ − ζx), R2 > 0. (72)

In this case the intrinsic dissipation is always non-negative, because it consists in a

linear combinations of squares with positive coefficients. Accordingly, the conduc-

tivity matrix R is a diagonal one.

At last, the intermediate case is achieved by the choice

φt = R(ξ − ζx), ψt = −R(τ − ηx) +R2(ξ − ζx). (73)

Here the intrinsic dissipation is partly canceled, as in the non-dissipative case, and

its remaining part is the square with a positive coefficient.
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To see the difference in the choice of the evolution equations for internal variables

in more detail, let us derive field equations. Using a quadratic function as the free

energy dependence

W =
1

2
(λ+ 2µ)u2x −

ρ0c

2θ0
(θ − θ0)

2 +m (θ − θ0)ux+

+Aφux +A′φxux +
1

2
Bφ2 +

1

2
Cφ2

x +
1

2
Dψ2,

(74)

we include for simplicity only the contribution of the second internal variable itself,

like it was in the isothermal case [32, 33]. Here the thermoelastic coefficient m

is related to the dilatation coefficient α, and the Lamé coefficients λ and µ by

m = α(3λ+ 2µ). In this case, the stresses are determined as follows:

σ = (λ+ 2µ)ux +m (θ − θ0) +Aφ+A′φx, η = −Cφx −A′ux, (75)

and τ coincides with the interactive internal force

τ = −∂W
∂φ

= −Aux −Bφ. (76)

The terms related to the second internal variable are

ζ = −∂W
∂ψx

= 0, ξ = −∂W
∂ψ

= −Dψ. (77)

5.1.1 The non-dissipative case

In the non-dissipative case, it follows from Eqs. (71) and (77) that

φt = −RDψ, (78)

i.e., the dual internal variable ψ is proportional to the time derivative of the primary

internal variable φt. It follows immediately from Eq. (78) that the evolution equa-

tion for the dual internal variable (71)2 can be rewritten in terms of the primary

one as a hyperbolic equation

φtt = R2D(τ − ηx). (79)
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As a result, we can represent the equations of motion in the form, which includes

only the primary internal variable

utt = (λ+ 2µ)uxx +mθx +Aφx +A′φxx,

Iφtt = Cφxx +A′uxx −Aux −Bφ,

(80)

where I = 1
R2D

is an internal inertia measure.

Accounting for the modified Fourier’s law (70), we can represent the energy

conservation equation (66) for small deviations from θ0 in its classical form

ρ0c θt − (kθx)x = mθ0uxt. (81)

This means that in this non-dissipative case the internal variables do not appear in

the heat conduction equation. At the same time the internal variables change the

heat flux because of the modified Fourier’s law (70). If we identify the primary inter-

nal variable with a microdeformation, then we arrive at the thermoelastic extension

of the model of linear dispersive wave propagation in solids with a microstructure

[33].

5.1.2 The fully dissipative case

In the fully dissipative case, the balance of linear momentum has the same form as

previously

utt = (λ+ 2µ)uxx +mθx +Aφx +A′φxx, (82)

but the evolution equations (72) take on the form

φt = R1(τ − ηx) = R1

(
Cφxx +A′uxx −Aux −Bφ

)
, (83)

ψt = R2(ξ − ζx) = −R2Dψ. (84)
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The energy conservation equation (66) according to the modified Fourier’s law (70)

takes the following form for small deviations from θ0

ρ0c θt − (kθx)x = mθ0uxt +
1

R1
φ2
t +

1

R2
ψ2
t , (85)

because the intrinsic dissipation is non-zero.

The evolution equations for the primary and secondary internal variables (Eqs.

(83) and (84)) differ from each other only due to the specific choice of the free energy

dependence (74). If we introduce a similar dependence for both internal variables,

then the corresponding evolution equations will be also similar. This means that

in the fully dissipative case we have no need for the dual internal variables. The

conventional single internal variable theory [29, 30] is sufficient. Since we are in-

terested in the influence of temperature gradients, we may expect that the free

energy depends only on the gradient of the primary internal variable, but not on

the variable itself. In the simplest case, this corresponds to the choice of coefficients

A = 0, B = 0, D = 0 in Eq. (74). Then equations of motion and energy are reduced

to

utt = (λ+ 2µ)uxx +mθx +A′φxx, (86)

φt = R1Cφxx +A′uxx, (87)

ρ0c θt − (kθx)x = mθ0uxt +
1

R1
φ2
t . (88)

The evolution equation for the primary internal variable (87) becomes the parabolic

one and we can identify the internal variable with a microtemperature. Its influence

on the macrotemperature manifests itself in the source term in the right hand side

of Eq. (88). The microtemperature (and its gradient) can be non-zero even in the

case of zero initial and boundary conditions for them due to the coupling with the

equation of motion.
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5.1.3 The intermediate case

In the intermediate case, we have again for the primary variable

φt = −RDψ, (89)

and the evolution equation for the secondary internal variable

ψt = −R(τ − ηx) +R2(ξ − ζx), (90)

is represented as

− 1

RD
φtt = −R(Cφxx +A′uxx −Aux −Bφ) +

R2

R
φt, (91)

or in the following form

Iφtt +
R2

R2
φt = (Cφxx +A′uxx −Aux −Bφ), (92)

which is a Cattaneo-Vernotte-type hyperbolic equation [7] for the primary internal

variable φ.

Correspondingly, the energy conservation equation (66) in this case has the form

ρ0c θt − (kθx)x = mθ0uxt +R2D
2φ2

t . (93)

As in the previous case, the equation for the macrotemperature (93) is influenced by

a source term which depends on the internal variable. Let us consider again the case

when the free energy depends only on the gradient of the primary internal variable,

but not on the variable itself. This case corresponds to the choice of coefficients

A = 0, B = 0. The reduced equations of motion are coupled

utt = (λ+ 2µ)uxx +mθx +A′φxx, (94)

Iφtt +
R2

R2
φt = (Cφxx +A′uxx), (95)
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which means that the primary internal variable possesses a wave-like behavior in-

duced by macrodeformation. Identifying the internal variable with the microtem-

perature, we see that the microtemperature may induce the wave-like propagation

also for the macrotemperature. As in the previous case, non-zero solutions for the

primary internal variable are provided by the coupling with the balance of linear

momentum even if initial and boundary conditions are zero for the internal variable.

6 Conclusions

Comparing the Cattaneo relation for the heat flux [7]

t0
∂Q

∂t
+Q = −k∇θ, (96)

with modified Fourier’s law arising from the dual internal variables theory

Q− ηφt − ζψt = −kθx, (97)

we can see that formally they can be identified under the choice

φ = Q, η = −t0, ζ = 0. (98)

Moreover, the Jeffreys-type relation [7]

t0
∂Q

∂t
+Q = −k∇θ − t1k1

∂∇θ
∂t

, (99)

can also be retrieved by

φ = Q, η = −t0, ψ = θx, ζ = −t1k1. (100)

However, we cannot identify internal variables with macroscopic fluxes and gradi-

ents, which can be controlled by external boundary conditions. Even if this can be

done formally, then the macroscopic heat equation cannot be changed significantly
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in the dual internal variables theory, because the modified heat flux in the energy

conservation equation coincides with that in the dissipation inequality. By contrast,

the Cattaneo relation or the Jeffreys relation modifies the heat flux independently

of that in the energy conservation equation [8].

Thus, the dual internal variables approach provides several possibilities for evo-

lution equations for internal variables. Accordingly, the internal variables can de-

scribe effects of microdeformations or microtemperatures (and their gradients). The

corresponding evolution equations can be hyperbolic even for microtemperatures,

which in its turn can induce wave-like propagation for macrotemperature due to the

coupling of equations.

The overall description of thermomechanical processes in microstructured solids

includes both direct and indirect couplings of equations of motion and heat conduc-

tion at the macrolevel. In addition to the conventional direct coupling, there exists

the coupling between macromotion and microtemperature evolution. This means

that the macrodeformation can induce microtemperature perturbations due to the

heterogeneity in the presence of a microstructure. These perturbations, propagating

with finite speed, can induce, in turn, corresponding changes in macrotemperature.

At last, the appeared changes in macrotemperature affect macrodeformations once

more.
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