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Abstract. A thermodynamically consistent form for the finite-volume numerical al-
gorithm for thermoelastic wave and front propagation is proposed in the paper. Such
reformulation provides applicability of the Godunov type numerical schemes based on
averages of field variables to the description of non-equilibrium situations. The non-
equilibrium description uses contact quantities instead of numerical fluxes. These quan-
tities satisfy the thermodynamic consistency conditions which generalize the classical
equilibrium conditions.

1 Introduction

The propagation of waves and phase-transition fronts in thermoelastic solids is governed
by the same field equations and equations of state (at least in the integral formulation).
In linear thermoelastic media these equations can be reduced to the classical hyperbolic
wave equation and to the parabolic heat equation. Problems arise in the propagation
of themoelastic waves and fronts in inhomogeneous media. From a practical point of
view, these problems are reduced to the construction of relevant numerical algorithms.
Possible rapid variations in the properties of considered materials and the simultaneous
presence of compression and shear waves require at least a second-order accuracy of
the algorithms. Among successful methods with high accuracy and efficiency are the
finite-volume schemes.

Finite-volume numerical methods (cf. [1], [2]) are based on the integration of gov-
erning equations over a control volume which includes a grid element and a time step.
This means that the resulting numerical scheme is expressed in terms of averaged field
variables and averaged fluxes at boundaries of the grid elements. The equations of state
determining the properties of a medium are also assumed to be valid for the averaged
quantities. In fact, this is an assumption of the local equilibrium inside the grid ele-
ment, where the local equilibrium state is determined by the averaged values of field
variables.

To obtain a high-order accuracy, the step-wise distribution of the field variables is
changed to a piece-wise linear (or even nonlinear) distribution over the grid (cf. [3]).
Such a reconstruction leads to a better approximation from the mathematical point
of view and provides a high-order accuracy together with a certain procedure for sup-
pressing spurious oscillations during computation. However, from the thermodynamic
point of view, the reconstruction destroys the local equilibrium inside grid cells. This
means that the equations of state are not valid in this case and even the meaning of
thermodynamic variables (e.g. temperature and entropy) is questionable.
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A possible solution of this problem is the description of the non-equilibrium states
inside the grid elements in the framework of the thermodynamics of discrete systems [4].
The thermodynamic state space is extended in this theory by accounting for so-called
contact quantities in addition to the usual local equilibrium variables. The crucial
hypothesis then is the connection between the excess energy and contact quantities
which describe the non-equilibrium states of discrete systems. The next step is the
extension of the classical equilibrium conditions to the non-equilibrium case. In the
paper, the corresponding procedure is described on the simple example of a uniaxial
motion of a slab.

2 Wave-propagation algorithm

In order to explain some of the key ideas with a minimal mathematical complexity, it is
convenient to work in an essentially one-dimensional setting. The system of equations
for one-dimensional elastic waves can be represented in the conservative form [6], [7]

∂q

∂t
+

∂f(q, x)

∂x
= 0. (1)

The indicated explicit dependence on the point x means that the body is materially
inhomogeneous in general. In the standard wave-propagation algorithm [1], a compu-
tational grid with interfaces xn−1/2 = (n − 1)/2∆x, time levels tk = k∆t and cells
Cn = [xn−1/2, xn+1/2] is defined. For simplicity, the grid size ∆x and time step ∆t are
assumed to be constant. Then the cell average

Qk
n ≈

1

∆x

∫ xn+1/2

xn−1/2

q(x, tk) dx, (2)

is updated in each time step as follows

Qk+1
n = Qk

n −
∆t

∆x
(F k

n+1 − F k
n ), (3)

where F k
n approximates the time average of the exact flux taken at the interface between

the cells, i.e.

F k
n ≈

1

∆t

∫ tk+1

tk

f(q(xn−1/2, t))dt. (4)

The main difficulty here is to determine the appropriate values of numerical fluxes
F k

n . The corresponding procedure was established by LeVeque [1] on the basis of the
solution of the Riemann problems at each interface between cells. It was shown in [5]
that the characteristic property of the conservative wave-propagation algorithm is the
following

F+
n−1(Q

k
n−1)− F−n (Qk

n) = fn(Qk
n)− fn−1(Q

k
n−1), (5)

where superscripts ”+” and ”-” denote numerical fluxes from the left and right sides
of the cell edge, respectively.

What we need is to extend this well developed numerical method to the simulation
of moving phase boundaries in solids. It should be noted that a stress-induced phase
transformation in a single crystal of a thermoelastic solid is a strongly non-equilibrium
process, because of a fast propagation of sharp interfaces through the material. There-
fore, we need to reformulate the algorithm in a consistent form for non-equilibrium
situations.



Thermoelastic Wave and Phase-Transition Front 3

3 Thermodynamic representation

The most convenient non-equilibrium thermodynamic theory for such a description
is the thermodynamics of discrete systems [4]. In this theory, the state space of any
discrete system is extended by means of contact quantities in order to describe non-
equilibrium states. In the simplest case of a fluid-like system, they are contact tem-
perature, dynamic pressure, and dynamic chemical potential. The contact quantities
provide a complete thermodynamic description of non-equilibrium states of a separated
discrete system. Note, however, that the values of the defined contact quantities differ
from the values of usual bulk parameters of the case of local equilibrium.

In the required extension of the concepts of the thermodynamics of discrete systems
to the thermoelastic case, we must define a contact dynamic stress tensor Σij [6],
[7] since the state space includes the deformation. Now it remains to establish the
connection between the bulk quantities and the contact quantities.

3.1 Thermodynamic consistency conditions

Classical equilibrium conditions for any two single component simple systems consist
in the equality of temperatures, pressures and chemical potentials in both systems

T (1) = T (2), p(1) = p(2), µ(1) = µ(2). (6)

Here superscripts denote distinct systems, and temperature, T , pressure, p, and chem-
ical potential, µ, are given by(

∂U

∂S

)
V,N

= T,
(

∂U

∂V

)
S,N

= −p,
(

∂U

∂N

)
S,V

= µ. (7)

Here U is the internal energy, S is the entropy, V is volume, and N is mass. In general,
the internal energy of a discrete system, U , that is not in equilibrium differs from the
local equilibrium value, Ueq, by an excess energy, Uex:

U(S, V, N)− Ueq(Seq, Veq, Neq) = Uex. (8)

Assuming that the local equilibrium variables are defined as usual (7), the contact
quantities can be associated with the excess energy:(

∂Uex

∂S

)
V,N

= Θ,
(

∂Uex

∂V

)
S,N

= −π,
(

∂Uex

∂N

)
S,V

= ν. (9)

Therefore, the equilibrium conditions (6) can be generalized to non-equilibrium case
as follows

T (1) + Θ(1) = T (2) + Θ(2), p(1) + π(1) = p(2) + π(2), µ(1) + ν(1) = µ(2) + ν(2). (10)

In the considered elastic case, only the condition (10)2 is relevant. It should be applied
in a tensorial form

σ
(1)
ij + Σ

(1)
ij = σ

(2)
ij + Σ

(2)
ij , (11)

where σij is the Cauchy stress tensor. We will apply the consistency condition (11) to
determine the values of the contact quantities.
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3.2 Contact quantities

The finite-volume algorithm (3) can also be represented in terms of contact quantities
[6]-[7]:

Qn+1
i = Qn

i −
∆t

∆x

(
C+

i (Qn
i )− C−i (Qn

i )
)

, (12)

where C± denote corresponding contact quantities,

C±(Qi) =

(
Σ±(Qi)
V±(Qi)

)
. (13)

Here V denotes, by duality, the contact deformation velocity. The consistency condition
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Fig. 1. Shear wave after interaction with phase boundary.

(11) in the uniaxial case

(Σ+
11)i−1 − (Σ−11)i = (σ11)i − (σ11)i−1, (14)

should be complemented by the kinematic condition [8] which can be rewritten in the
small-strain approximation as follows (v is the particle velocity)

(V+
1 )i−1 − (V−1 )i = (v1)i − (v1)i−1. (15)

The two relations (14) and (15) can be expressed in vectorial form as follows:

C+
i−1(Q

n
i−1)− C−i (Qn

i ) = fi(Qi)− fi−1(Qi−1). (16)
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It is easy to see that the last expression is nothing else but the characteristic property
(5) for the conservative wave-propagation algorithm. Thus, the thermodynamic con-
sistency conditions and kinematic conditions at the cell edge automatically lead to the
conservative wave-propagation algorithm. From another point of view, this means that
the wave-propagation algorithm is thermodynamically consistent.

4 Numerical results

Examples of numerical simulations of thermoelastic wave propagation are presented in
[6], [7]. The most significant generalization of the wave-propagation algorithm consists
in the possibility of numerical modeling of phase-transition front propagation [9], [10].
In the latter case we apply another consistency condition at the phase boundary. Details
can be found in above cited papers. To show the capability of the algorithm, we present
here the results of numerical simulation of the interaction of a shear stress wave with
a phase boundary. We simulate the wave propagation induced by an impulsive loading
of a slab by a shear stress. After interaction with the phase boundary initially set at
abscissa 500, we obtain transmitted and reflected waves, amplitudes of which are cut
due to the martensitic phase transformation (Fig.1). In addition, we observe a slight
displacement of the phase boundary into the previous austenitic region.
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