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It has been shown how to bridge the physiological descriptions to continuum
mechanics using the formalism of internal variables. Due to the complicated
microstructure of cardiac tissues, these internal variables are switched in suc-
cessively forming a hierarchy. The stress developed in the myocardium is sepa-
rated into active and passive parts. The passive stress depends upon the elastic
properties of fibres, the active stress, according to the Huxley model, depends
on triggering the myofibrils due to Ca2+ signals. Overall, the process includes
a three-level hierarchy of internal variables. The test problems, such as isomet-
ric contraction, Adenosin-Tri-Phosphate (ATP) consumption, etc. have shown
good matches with experimental results. The numerical calculations based on
FEM are presented for the left ventricle, modelled geometrically as a spheroid.

1 Introduction

The complexity of living tissues and cells is a challenge for modelling vari-
ous biophysical and biochemical processes. The progress of in silico modelling
shows the strength of a bio-mathematical approach supported by large-scale
computing techniques. There are several reviews which reflect the recent re-
sults in this fast progressing research; see Kohl et al. (2000), Kolston (2000),
Humphrey (2003), van Leeuwen and Aerts (2003), etc. The most promising
results are obtained by integrating macro- and microbehaviour of tissues.
Here macrobehaviour is understood for an organ or tissue as a whole and
microbehaviour for the behaviour and processes of its constituents, including
the processes in cells. Such a matching of physiology and continuum theory
leads to a comprehensive description of tissues and their assemblies with pre-
dictive power and a wide range of in silico experiments. Those experiments
should, however, always be validated against physical experiments in vivo and
in vitro.
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In this paper we focus on cardiac mechanoenergetics. Models of cardiac
mechanics and electrical activation have been developed by several groups (re-
viewed by Hunter et al. (2003)). The primary aim is to combine stress analysis
in cardiac muscles with cell energetics. It is shown how to bridge the physiolog-
ical descriptions to continuum mechanics. In this context special attention is
focused on the hierarchy of processes within the cell resulting in active stress.
The concept of internal variables is used (Maugin (1990), Maugin and Muschik
(1994)). Due to the complicated hierarchical (step-by-step) processes in cells
and microstructured tissues, the basic concept of internal variables is general-
ized into the concept of hierarchical internal variables. This concept is demon-
strated for the cardiac contraction based on the Huxley model. That means
a sequence of internal variables: Ca2+ signal, the number of activated cross-
bridges, and the number of force-producing cross-bridges. Such a successive
modelling permits the build up of a mathematical model for cardiac contrac-
tion that can be tested against various physiological experiments (Vendelin
et al. (2000)). Numerical calculations using the finite-element method for the
left ventricle (LV) demonstrate the effectiveness of such an approach (Vendelin
et al. (2002)). The geometry of the LV is taken as a spheroid.

The paper is organized as follows. Section 2 gives a brief overview of the
concept of internal variables with the generalization to model hierarchies. In
Section 3, the basic features of cardiac modelling are presented and formulated
within the framework of hierarchical internal variables. Section 4 involves the
discussion, including numerical results and conclusions.

2 The Concept of Internal Variables

The concept of internal variables has its origin in thermodynamics and chem-
ical systems. Contemporary understanding has been reviewed by Maugin and
Muschik (1994). It rests upon the assumption that the thermodynamic state
is determined not only by observable variables χ (like strain) but also by in-
ternal variables α hidden to the external observers. Observable variables are
internally governed by a balance law with a kinetic energy. Internal variables,
however, do not possess inertia and are governed by kinetic equations. A typ-
ical case of an internal parameter in the mechanics of solids is the damage
parameter.

The formalism of internal variables in a nutshell is the following (for more
detailed description, see Maugin (1990), Maugin and Muschik (1994)). The
dependent variables, for example stress σ, must be simultaneously a function
of both observable and internal variables:

σ = σ(χ, α). (1)

This must be complemented by an evolution law, such as

α̇ = f(χ, α) + g(χ, α)χ̇, (2)
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describing the temporal evolution of the variable α. As usual, stress (i.e. an
inertial variable) is derived from a free energy function ψ. In addition to that,
a dissipation potential D > 0 is postulated. Then it is possible to show (see
Maugin (1990)) that the governing eq. (2) for α is derived as

δ ψ

δ α
+

∂ D
∂ α̇

= 0, (3)

where δ/δα denotes the Euler-Lagrange derivative. This concept has also been
used by Maugin and Engelbrecht (1994) for description of nerve pulse dynam-
ics where the ion current is dependent on internal variables.

Biological processes, however, are complex and beside the structural hi-
erarchy are often characterized by several embedded microprocesses, includ-
ing also the cellular level. In this case we have proposed (Engelbrecht et al.
(2000)) the concept of hierarchical internal variables. In general terms, the
idea of building up the mathematical model is the following.

(i) a constitutive equation for a dependent variable σ depends on the ob-
servable variable χ and the first-level internal variable α:

σ = σ(χ, α); (4)

(ii) the evolution law for α is

α̇ = f1(χ, α, β), (5)

where β is the next, second-level, internal variable influencing σ only through
dynamics of the first-level internal variable α;

(iii) the evolution law for β is

β̇ = f2(χ, α, β, γ), (6)

where γ is again the next, now the third-level, internal variable that influences
σ only through dynamics of the second-level internal variable β;

(iv) the evolution law for γ is

γ̇ = f3(χ, α, β, γ, ...), (7)

etc.
Internal variables α, β, γ, ... form a hierarchy reflecting the hierarchical

processes in the medium (tissue). Note that here we have dropped the gradi-
ents and did not discuss the entropy fluxes.

3 Cardiac Contraction

3.1 Physiological Background

Based on fundamental treatises on cardiac performance (Glass et al. (1991),
Zipes and Jalife (1995)) we focus our attention on the mechanical behaviour
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of the heart. In terms of continuum mechanics, the ventricles are thick-walled
shells with complex geometry made of muscle fibres with essential variation
of their orientation. A single fibre is made up by the bunches of myofibrils
with a surrounding sarcotubular system. The myofibrils convert metabolic
energy into mechanical energy and the sarcotubular system governs the Ca2+

ions needed for activation. A myofibril, in its turn, is composed of repeating
units of myosin and actin filaments (sarcomeres). The excitation of a muscle
is triggered by an action potential from the conducting system. This potential
releases Ca2+ ions that activate the troponin molecules at the actin filament
so that they will be able to attach to the heads of myosin molecules. These
heads – the cross-bridges – swivel and cause sliding of filaments against each
other, i.e. cause contraction of the muscle.

The transformation of the whole actomyosin complex is driven by the free
energy of ATP hydrolysis to ADP and inorganic phosphate Pi.

The early phenomenological models tried to describe the relationships be-
tween observed macroscopic data. Starting from the Huxley (1957) models,
contemporary modelling has put much more emphasis on mechanoenergetics
(Glass et al. (1991), van Campen et al. (1994), Humphrey (2003)). Here we
follow the ideas of Vendelin et al. (2000), casting them in the formalism of
internal variables.

3.2 Mathematical Modelling of Tissue Properties

We assume that the total (Cauchy) stress in the cardiac muscle can be split
into two parts,

σ = σp + σa, (8)

where σp and σa denote passive and active stress, respectively. The passive
stress results from the elastic deformation of the tissue and can be calculated
as

σp = ∂ψ/∂εe, (9)

where εe is the strain. The strain tensor is taken in its full form correspond-
ing to large deformations. The active stress σa is generated in myofibrils by
activation and is directed parallel to the fibre orientation. Hence

σa = σaε1 ⊗ ε1, (10)

where ε1 is the unit vector identifying the orientation. The mechanism for
generating σa involves internal variables, as demonstrated below.

The force developed by the actinmyosin complex depends on the distance z
between an attached cross-bridge and the nearest actin site. Actin and myosin
produce the mechanical force through cyclic interaction using the free energy
of ATP hydrolysis to ADP and Pi. The kinetic scheme of such an interaction
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Fig. 1. The kinetic scheme of actin (A) and myosin (M) interaction (lower part) and
its simplification as used in the model (upper part). States which include only M in
the scheme present the states where myosin head is not attached to actin filament.
Adapted from Vendelin et al. (2000).

and the simplified version used in the model are shown in Fig. 1. In the model,
there are two states through the cycle producing force. Denoting them by A
and B, we may calculate the corresponding forces by

FA = KA z, FB = KB z, (11)

where KA,KB are elastic constants. Further we take KA = KB = K. Assum-
ing the uniform distribution of cross bridges in z over an interval d, we find
the active stress

σa =
mlsK

2d

(∫ d/2

−d/2

znA(z)dz +
∫ d/2

−d/2

znB(z)dz

)
, (12)

where m is the number of cross-bridges per unit volume and nA(z), nB(z) are
relative numbers of cross-bridges producing force (i.e. being in states A and
B). The variables, nA and nB , are the first-level internal variables. They are
governed by the (coupled) kinetic equations (Hill (1974))

∂nA

∂t
+ w

∂nA

∂z
= f1nC + g2nB − (g1 + f2)nA, (13)

∂nB

∂t
+ w

∂nB

∂z
= f1nA − (g2 + f3)nB , (14)

where w is the speed of lengthening, f1, f2, f3, g1, g2 are kinetic constants
between the states (see Vendelin et al. (2000)) and nC is the number of cross-
bridges that do not produce force. Clearly, the summation of all activated
cross-bridges gives

A = nA + nB + nC . (15)
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Now, A is the next in the hierarchy, i.e. the second-level internal vari-
able, the change in which affects the observable σa only through nA, nB . The
internal variable A (the activation parameter) has its own kinetic equation,
i.e.

dA
dt

= c1(l1)[Ca2+](1− A)− c2(ls)A, (16)

with c1(ls), c2(ls) as certain parameters. This kinetic equation involves [Ca2+]
– the third-level internal variable. This variable is governed by its own kinetic
equation:

d[Ca2+]
dt

= f
(
[Ca2+]

)
. (17)

As is clear from equations presented, the observable σa is influenced by three
levels of internal variables. In addition to finding σa, it is possible to compute
the ATP consumption rate VATP in the tissue using the kinetic scheme of
actomyosin interaction (Fig. 1):

VATP =
1
d

∫ d/2

−d/2

f3(z)nB(z, t)dz. (18)

Thus, through the model we are able to relate the mechanical function of the
muscle (stress and strain) to biochemical energy consumption (ATP consump-
tion).

The model was tested against several experimental results that are de-
scribed in detail in Vendelin et al. (2000). In short, the following tests were
performed: (a) the relationship between ATP consumption and specific area
in the stress-strain diagram is linear, with contractile efficiency close to the
measured one; (b) the computed isometric active stress during a beat repli-
cates the measured stress in isosarcometric contractions at different sarcomere
length values; (c) the contraction duration is smaller in the isotonic case if
compared with the isometric case, in agreement with the isotonic contraction
experiment results; (d) the end-systolic point in the stress-strain diagram in
isotonic contraction lies close to the end-systolic line computed for the iso-
metric case. The model was able to predict the following properties of the
muscle: (a) the shortening velocity-afterload relationship at afterloads higher
than 2.5 kPa; (b) the drop of ATP consumption by the cross-bridges during a
cycle by about 40% if the muscle is released at the time of peak force.

3.3 Mathematical Modelling of the Left Ventricle

Using the material properties described above, we developed a mathematical
model of the left ventricle (Vendelin et al. (2002)). The model computes the
deformation of the ventricle, local strains, passive and active stress, and ATP
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consumption in the ventricular wall. In short, the following assumptions were
adopted when constructing the model. First, in the reference state of the
model, defined as the state with zero transmural pressure, the endocardial and
epicardial surfaces are represented by truncated focal ellipsoids (Streeter and
Hanna (1973)), leaving a thick wall between them. The residual stresses in the
unloaded state were ignored (Hunter et al. (2003)). Second, the calculations
are based on the law of conservation of momentum. We neglected inertial and
gravitational effects in our simulations. Third, the hemodynamic coupling of
the left ventricle to the aorta is described by a three-element aortic input
impedance (Bovendeerd et al. (1992)). Axial displacement of the nodes in
the basal surface and circumferential displacement of subepicardial basal ring
are suppressed. A uniform left ventricular pressure is applied to the entire
endocardial surface. Epicardial pressure is assumed to be zero during a cardiac
cycle. Finally, the governing equations were discretized using the finite element
method in conjunction with Galerkin’s method.

Using this model we studied the influence of fiber orientation in the left
ventricular (LV) wall on the ejection fraction, efficiency and heterogeneity
of the distributions of developed fiber stress, strain and ATP consumption
(Vendelin et al. (2002)). The fiber orientation was quantified by two angles: the
helix fiber angle, describing the crossover of fibers between base and apex of
the heart, and the transverse angle, describing the crossover of fibers between
inner and outer layers of the cardiac wall. For simplicity, the influence of the
laminar structure of the myocardium on the distributions of stress and strain
in the left ventricular wall was not considered. The computed variances of
sarcomere length (VarSL), developed stress (VarDS) and ATP consumption
(VarATP) have several minima at different transmural courses of helix fiber
angle. Intriguingly, we identified only one region in the design space used with
high ejection fraction, high efficiency of the LV and relatively small VarSL,
VarDS and VarATP. This region corresponds to the physiological distribution
of the helix fiber angle in the LV wall. Transmural fiber angle can be predicted
by minimizing VarSL and VarDS, but not VarATP. If VarATP is minimized
then the transverse fiber angle is considerably underestimated. The reasons for
such differences in estimation are not clear yet. However, our results suggest
that the ATP consumption distribution does not regulate the fiber orientation
in the heart.

The model was tested against several experiments (Vendelin et al. (2002)).
First, the computed increase in the equatorial wall thickness, outer equatorial
ventricular radius and outer ventricular length during systole were close to the
values measured by Olsen et al. (1981). Second, torsion of the apex during
systole was found to be very sensitive to the model parameter values and
somewhat different from the measured values (see Vendelin et al. (2002) for
results and discussion). Third, the relationship between the pressure developed
and the oxygen consumption of the ventricle is reproduced accurately.

An example solution is depicted in Figs 2 and 3. As is shown in the fig-
ures, the model can predict mechanical and energetic properties of the left
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LV
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Fig. 2. Developed pressure in left ventricle (LV) and pressure in aorta (AO) (left),
blood flow from LV (center), and ATP consumption by LV (right) computed by the
model.

Fig. 3. Developed stress (the top row) and ATP consumption rate (the bottom
row) during a systole computed by the model. The time-moments are 0.3 s (the left
column) and 0.4 s (the right column).

ventricle. Now the model has to be tested against available experimental data
on the distribution of oxygen consumption in the ventricle as well as regional
deformation.

4 Discussion

The calculations of contraction for the idealized spheroidal LV are performed
using the model described briefly in Section 3 and FEM. Several test problems
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were solved and then compared with experimental results (Vendelin et al.
(2000)). The tests included isotonic and physiologic contractions, ATP con-
sumption, the quick-release experiment, etc. The model is in good agreement
with the classical measurements of the SSA and oxygen consumption depen-
dency.
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