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Abstract

A thermodynamically consistent form for the finite-volume numerical
method for thermoelastic wave and front propagation is proposed in the
paper. Such reformulation provides applicability of the Godunov type
numerical schemes based on averages of field variables to the descrip-
tion of non-equilibrium situations. The non-equilibrium description uses
contact quantities instead of numerical fluxes. These quantities satisfy
the thermodynamic consistency conditions which generalize the classical
equilibrium conditions.
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1 Introduction

The propagation of waves and phase-transition fronts in thermoelastic
solids is governed by the same field equations and equations of state (at
least in the integral formulation). In linear thermoelastic media these
equations can be reduced to the classical hyperbolic wave equation and to
the parabolic heat equation. Problems arise in the propagation of themoe-
lastic waves and fronts in inhomogeneous media, such as laminated com-
posites, functionally graded materials, mesoscopic granular media, two-
phase media, in other words, in media with a microstructure. From a
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practical point of view, these problems are reduced to the construction
of relevant numerical algorithms. Possible rapid variations in the proper-
ties of considered materials and the simultaneous presence of compression
and shear waves require at least a second-order accuracy of the algo-
rithms. Among successful methods with high accuracy and efficiency are
the finite-volume schemes.

Finite-volume numerical methods (cf. [1, 2]) are based on the integra-
tion of governing equations over a control volume which includes a grid
element and a time step. This means that the resulting numerical scheme
is expressed in terms of averaged field variables and averaged fluxes at
boundaries of the grid elements. The equations of state determining the
properties of a medium are also assumed to be valid for the averaged
quantities. In fact, this is an assumption of the local equilibrium inside
the grid element, where the local equilibrium state is determined by the
averaged values of field variables.

To obtain a high-order accuracy, the step-wise distribution of the field
variables is changed to a piece-wise linear (or even nonlinear) distribution
over the grid [3]. Such a reconstruction leads to a better approximation
from the mathematical point of view and provides a high-order accuracy
together with a certain procedure for suppressing spurious oscillations
during computation. However, from the thermodynamic point of view,
the reconstruction destroys the local equilibrium inside grid cells. This
means that the equations of state are not valid in this case and even the
meaning of thermodynamic variables (e.g. temperature and entropy) is
questionable.

A possible solution of this problem is the description of the non-
equilibrium states inside the grid elements in the framework of the ther-
modynamics of discrete systems [4]. The thermodynamic state space is
extended in this theory by accounting for so-called contact quantities in
addition to the usual local equilibrium variables. These quantities can be
introduced into the finite-volume schemes in a natural way. The crucial
hypothesis then is the connection between the excess energy and contact
quantities which describe the non-equilibrium states of discrete systems.
The next step is the extension of the classical equilibrium conditions to
the non-equilibrium case. In the paper, the corresponding procedure is
described on the simple example of a uniaxial motion of a slab.

The results of computations of a test problem for the propagation of
thermoelastic waves in media with rapidly-varying properties (e.g. in func-
tionally graded materials) are presented. The comparison of the results of
computations with the experimental investigations of the impact-induced
martensitic phase transformation is also given in the one-dimensional case.

2 Simple example: uniaxial motion of a
slab

In order to explain some of the key ideas with a minimal mathemati-
cal complexity, it is convenient to work in an essentially one-dimensional
setting. Consider a slab, which in an unstressed reference configuration
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occupies the region 0 < x1 < L, −∞ < x2, x3 < ∞, and consider uniaxial
motion of the form

ui = ui(x, t), x = x1, (1)

where t is time, xi are spatial coordinates, ui are components of the
displacement vector. In this case, we have only three non-vanishing com-
ponents of the strain tensor

ε11 =
∂u1

∂x
, ε12 = ε21 =

1

2

∂u2

∂x
, ε13 = ε31 =

1

2

∂u3

∂x
. (2)

Particle velocities associated with (1) are

vi(x, t) =
∂ui

∂t
. (3)

Without loss of generality, we can set ε13 = 0, v3 = 0. Then we obtain
uncoupled systems of equations for longitudinal and shear components
which express the balance of linear momentum and the time derivative of
the Duhamel-Neumann thermoelastic constitutive equation, respectively
[5, 6]:

ρ0(x)
∂v1

∂t
=

∂σ11

∂x
,

∂σ11

∂t
= (λ(x) + 2µ(x))

∂v1

∂x
+ m(x)

∂θ

∂t
, (4)

and

ρ0(x)
∂v2

∂t
=

∂σ12

∂x
,

∂σ12

∂t
= µ(x)

∂v2

∂x
, (5)

which are complemented by the heat conduction equation

C(x)
∂θ

∂t
=

∂

∂x

(
k(x)

∂θ

∂x

)
. (6)

Here σij is the Cauchy stress tensor, ρ0 is the density, θ is temperature,
and C(x) is the heat capacity per unit volume for a fixed deformation.
The dilatation coefficient α is related to the thermoelastic coefficient m,
and the Lamé coefficients λ and µ by m = −α(3λ + 2µ). The indicated
explicit dependence on the point x means that the body is materially
inhomogeneous in general. These systems of equations, (4) and (5), can
be solved separately. For simplicity, we focus our attention on the system
of equations (4) for longitudinal components in an isothermal situation.

2.1 Dynamic loading

In a dynamic problem we shall look for piecewise smooth velocity and
stress fields v1(x, t), σ11(x, t) for inhomogeneous thermoelastic materials,
which obey the following initial and boundary conditions:

σ11(x, 0) = v1(x, 0) = 0, for 0 < x < L, (7)

v1(0, t) = v0(t), σ11(L, t) = 0 for t > 0, (8)

and satisfy the field equations

∂(ρ0(x)v1)

∂t
− ∂σ11

∂x
= 0,

∂

∂t

(
σ11

λ(x) + 2µ(x)

)
− ∂v1

∂x
= 0. (9)

The system of equations (9) is a system of conservation laws which is
suitable for a numerical solution by a finite-volume scheme. We analyze
the recently proposed wave-propagation algorithm [1, 2].
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3 Wave-propagation algorithm

The system of equations for one-dimensional elastic waves (5) can be
represented in the conservative form

∂q

∂t
+

∂f(q, x)

∂x
= 0, (10)

where

q(x, t) =

(
ρ0(x)v(x, t)

σ(x, t)/(λ(x) + 2µ(x)

)
, f(q, x) =

(
−σ(x)
−v(x)

)
.

In the standard wave-propagation algorithm [1], a computational grid
with interfaces xn−1/2 = (n − 1)/2∆x, time levels tk = k∆t and cells
Cn = [xn−1/2, xn+1/2] are defined. For simplicity, the grid size ∆x and
time step ∆t are assumed to be constant. Then the cell average

Qn
i ≈

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx (11)

is updated at each time step as follows

Qn+1
i = Qn

i −
∆t

∆x

(
A+∆Qi−1/2 +A−∆Qi+1/2

)
, (12)

where

A+∆Qi−1/2 =

m∑
p=1

(sp
i−1/2)

+Wp
i−1/2, (13)

and

A−∆Qi+1/2 =

m∑
p=1

(sp
i+1/2)

−Wp
i+1/2. (14)

Here s+ = max(s, 0), s− = min(s, 0), and sp
i−1/2 are speeds of waves

Wp
i−1/2 obtained from the solution of the Riemann problem at xi−1/2

which consists of the equation (10) with piecewise constant initial data

q(x, 0) =

{
Qi−1 if x < xi−1/2;
Qi if x > xi−1/2.

(15)

The above-mentioned approach uses so-called cell-edge flux functions [7].
The main assumption here is the satisfaction of the Rankine-Hugoniot
conditions at xi−1/2

Qi −Qi−1 =

m∑
p=1

Wp
i−1/2. (16)

An alternative approach is to assume that a distinct flux function fi−1/2(q)
is associated with each cell interface xi−1/2. In this case the flux functions
are called cell-centered [7]. When cell-centered flux functions are used,
a generalized Riemann problem at cell interface xi−1/2 takes place. It
consists of the equation (compare to (10))

∂q

∂t
+

∂Fi−1/2(q, x)

∂x
= 0, (17)
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together with the initial data (15), where

Fi−1/2(q, x) =

{
fi−1(q) if x < xi−1/2;
fi(q) if x > xi−1/2.

(18)

The solution of the generalized Riemann problem is obtained by using
the decomposition of the flux difference fi(Qi) − fi−1(Qi−1) instead of
the decomposition (16):

fi(Qi)− fi−1(Qi−1) =

m∑
p=1

Zp
i−1/2, (19)

where Zp are called f -waves [7], as they are analogous the waves Wp from
(16). Since each Zp

i−1/2 corresponds to sp
i−1/2W

p
i−1/2, the expressions for

fluctuations A+∆Qi−1/2 and A−∆Qi+1/2 (13) are simply replaced by

A+∆Qi−1/2 =
∑

p:s
p

i−1/2
<0

Zp
i−1/2, (20)

A−∆Qi+1/2 =
∑

p:s
p

i+1/2
>0

Zp
i+1/2. (21)

As it is shown [7], the obtained algorithm is second-order accurate for
smooth solutions.

3.1 Linear elastic waves in heterogeneous media

The Jacobian matrix for the system (5) is

fq(q, x) =

(
0 −1/ρ0(x)

−λ(x)− 2µ(x) 0

)
, (22)

with eigenvalues ±c(x), where the sound speed is given by

c(x) =
√

(λ(x) + 2µ(x))/ρ0(x). (23)

The corresponding eigenvectors are

r(1)(x) =

(
1

Z(x)

)
for s(1)(x) = −c(x), (24)

and

r(2)(x) =

(
1

−Z(x)

)
for s(2)(x) = c(x), (25)

where Z(x) = ρ0(x)c(x) is the impedance. For the linear problem with
variable-coefficients, the Riemann solver is defined by choosing the wave
speeds to be the sound speed in the appropriate cell [7]

s
(1)

i−1/2 = −
√

λi−1 + 2µi−1

ρi−1
, s

(2)

i−1/2 =

√
λi + 2µi

ρi
. (26)

Then the waves W(1) and W(2) must be of the form

W(1)

i−1/2 = α
(1)

i−1/2r
(1)

i−1/2 = α
(1)

i−1/2

(
1

Zi−1

)
, (27)
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W(2)

i−1/2
= α

(2)

i−1/2
r
(2)

i−1/2
= α

(2)

i−1/2

(
1
−Zi

)
. (28)

The values α
(1)

i−1/2
and α

(2)

i−1/2
are determined by the condition [7]

fi(Qi)− fi−1(Qi−1) =

2∑
p=1

α
(p)

i−1/2s
(p)

i−1/2r
(p)

i−1/2. (29)

This leads to the following characteristic property of the algorithm

A+∆Qi−1/2 +A−∆Qi−1/2 = fi(Qi)− fi−1(Qi−1). (30)

As noted above, these modifications may be thermodynamically incon-
sistent. Therefore, what we need is to reformulate this well developed
method in a consistent form for non-equilibrium situations.

4 Thermodynamic representation

4.1 Discrete systems

It is salient to remind the reader of the notion of discrete systems in ther-
modynamics (Muschik [4]). In such thermodynamics, the thermodynamic
state space is extended by means of so-called contact quantities in order
to describe non-equilibrium states. In this perspective a discrete system is
a domain G of R3 that is separated from its environment G∗ by a contact
surface ∂G. The interaction between G and G∗ is described by contact
quantities. In a Schottky system per se, this interaction consists of heat,
work and mass exchanges. For instance, considering the rate of heat ex-
change Q̇, the so-called contact temperature, Θ, is defined by the following
inequality:

Q̇
(

1

Θ
− 1

T ∗

)
≥ 0 (31)

for vanishing work and mass exchange rates. Here T ∗ is the thermo-
static temperature of the equilibrium environment. From (31) it follows
that Q̇ and the bracket have always the same sign. If we now suppose
that there exists exactly one equilibrium environment for each arbitrary
discrete system for which the net heat exchange between them vanishes,
then the defining inequality (31) determines the contact temperature of
the system as the thermostatic temperature T ∗ of the system’s environ-
ment for which this net exchange vanishes. The dynamic pressure, π, and
the dynamic chemical potential, ν, are defined analogously

V̇ (π − p∗) ≥ 0, Ṁ (ν∗ − µ) ≥ 0, (32)

where V̇ is the time rate of volume, and Ṁ is the time rate of mass.
The contact quantities so defined provide a complete thermodynamic de-
scription of non-equilibrium states of a separated discrete system. Note,
however, that the values of the defined contact quantities differ from the
values of usual bulk parameters of the case of local equilibrium.

In the required extension of the concepts of the thermodynamics of
discrete systems to the thermoelastic case, in addition to Θ and the defin-
ing inequality (31), which governs heat exchange, we must define a contact
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dynamic stress tensor Σij since the state space includes the deformation.
Analogously to (31) that holds for ε̇ij = 0 we have thus

∂εij

∂t
(Σij − σ∗ij) ≥ 0, (Q̇ = 0). (33)

Here σ∗ij is the Cauchy stress tensor in the environment. Now it remains
to establish the connection between the bulk quantities and the contact
quantities.

4.2 Thermodynamic consistency conditions

Classical equilibrium conditions for any two single component simple sys-
tems consist in the equality of temperatures, pressures and chemical po-
tentials in both systems

T (1) = T (2), p(1) = p(2), µ(1) = µ(2). (34)

Here temperature, T , pressure, p, and chemical potential, µ, are given by(
∂U

∂S

)
V,N

= T,
(

∂U

∂V

)
S,N

= −p,
(

∂U

∂N

)
S,V

= µ, (35)

Here U is the internal energy, S is the entropy, V is volume, and N is
mass of the system. In general, the internal energy of a discrete system
that is not in equilibrium differs from the local equilibrium value by an
excess energy:

U(S, V, N)− Ueq(Seq, Veq, Neq) = Uex. (36)

Assuming that the local equilibrium variables are defined as usual (35),
the contact quantities can be associated with the excess energy:(

∂Uex

∂S

)
V,N

= Θ,
(

∂Uex

∂V

)
S,N

= −π,
(

∂Uex

∂N

)
S,V

= ν. (37)

Therefore, the equilibrium conditions (34) can be generalized to non-
equilibrium case as follows

T (1) + Θ(1) = T (2) + Θ(2), p(1) + π(1) = p(2) + π(2), (38)

µ(1) + ν(1) = µ(2) + ν(2). (39)

In the considered elastic case, only the condition (38)2 is relevant. It
should applied in a tensorial form

σ
(1)
ij + Σ

(1)
ij = σ

(2)
ij + Σ

(2)
ij . (40)

We will apply the consistency condition (40) to determine the values of
the contact quantities.

4.3 Contact quantities

The finite-volume algorithm (12) can also be represented in terms of con-
tact quantities [5]-[6]:

Qn+1
i = Qn

i −
∆t

∆x

(
C+

i (Qn
i )− C−

i (Qn
i )

)
, (41)

where C± denote corresponding contact quantities,

C±(Qi) =

(
Σ±(Qi)
V±(Qi)

)
. (42)
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Here V denotes, by duality, the contact deformation velocity.
The consistency condition (40) in the uniaxial case

(Σ+
11)i−1 − (Σ−11)i = (σ11)i − (σ11)i−1, (43)

should be complemented by the kinematic condition [8] which can be
rewritten in the small-strain approximation as follows

(V+
1 )i−1 − (V−1 )i = (v1)i − (v1)i−1. (44)

The two relations (43) and (44) can be expressed in vectorial form as
follows:

C+
i−1(Q

n
i−1)− C−

i (Qn
i ) = fi(Qi)− fi−1(Qi−1). (45)

It is easy to see that the last expression is nothing else but the character-
istic property (30) for the conservative wave-propagation algorithm.

Thus, the thermodynamic consistency conditions and kinematic condi-
tions at the cell edge automatically lead to the conservative wave-propagation
algorithm. From another point of view, this means that the wave-propagation
algorithm is thermodynamically consistent.

In practice, we note that the contact velocities are connected with
contact stresses by relations along characteristic lines of the system of
equations (9)

(V−1 )i = − (Σ−11)i

ρici
, (V+

1 )i−1 =
(Σ+

11)i−1

ρi−1ci−1
. (46)

Therefore, we have a linear system of equations for the determination of
contact stresses

(Σ+
11)i−1 − (Σ−11)i = (σ̄11)i − (σ̄11)i−1, (47)

(Σ+
11)i−1

ρi−1ci−1
+

(Σ−11)i

ρici
= (v̄1)i − (v̄1)i−1. (48)

Solving the system of equations (47), (48), we obtain the values of contact
quantities needed to update the state of each cell to the next time step
within the finite-volume numerical scheme (41).
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Figure 1: Density distribution in a slab with inhomogeneous layer.

5 Numerical results

First we consider the stress wave propagation in the one dimensional set-
ting. This is motivated to draw the parallels with a similar problem
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discussed by Cermelli and Pastrone [9] who have shown the possible de-
cay of the wave amplitude by a layer where some microscopic damage
has been accumulated. Their model was based on the concept of inter-
nal variables (cf. also [10]). Microstructure is then described by a certain
scalar field that depends on the defect density and affects the energy func-
tion. It results in a certain additional nonequilibrium stress accounted
for in governing equations [9]. In our calculation, a layer of functionally
graded material (FGM) is placed in the interval [300,700] within the di-
mensionless computational domain [0,1000] - see Fig.1. The mechanical
properties of the layer are given by a mixture of randomly embedded par-
ticles with a Gaussian distribution function (Fig.1). The properties of the
metal and ceramic are the following [11, 12]: Young’s modulus 199.5 GPa
and 393 GPa, Poisson’s ratio 0.3 and 0.25, and density 8900 kg/m3 and
3970 kg/m3, respectively. The results of calculations are shown in Fig.2.
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Figure 2: Stress wave propagation inside a medium with inhomogeneous layer:
stress profiles for consecutive time instants.

Clearly, we get an expected decreasing of the transmitted wave amplitude
after interaction with the layer. It should be noted that the remarkable
decreasing is observed only in the case of a significant difference in the
properties of materials. In addition, due to the random distribution in
the layer, the reflected wave shows up certain irregularities (small wiggles
about the zero line) that can be used for detecting the properties of the
layer. By comparing the results obtained by the formalism of internal
variables [9] and straightforward calculations, one could determine the
properties of the scalar field used to model internal variables.

Now we will try to characterize the interaction of a shear stress wave
with a phase boundary and to compare our simulations with available ex-
perimental data for a dynamical loading. To our knowledge, the only ex-
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perimental investigation concerning impact-induced austenite-martensite
phase transformations was reported by Escobar and Clifton [13], [14].
In their experiments, these authors used thin plate-like specimens of Cu-
14.44Al-4.19Ni shape-memory alloy single crystal. One face of this austenitic
specimen was subjected to an oblique impact loading, generating both
shear and compression. The temperature changes during Escobar and
Clifton’s experiments are thought to be relatively unimportant. The mea-
surements are taken in the central part of the rear face of the specimen.
As Escobar and Clifton noted, measured velocity profiles provide several
indications of the existence of a propagating phase boundary, in partic-
ular, a difference between the measured particle velocity and the trans-
verse component of the projectile velocity. This velocity difference, in the
absence of any evidence of plastic deformation, is indicative of a stress
induced phase transformation that propagates into the crystal from the
impact face. To compare the results of our numerical simulation with
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Figure 3: Particle velocity versus impact velocity. Smooth loading.

the experimental data by Escobar and Clifton [13], [14], we extract the
properties of austenite phase of the Cu-14.44Al-4.19Ni shape-memory al-
loy from their paper: the density ρ = 7100 kg/m3, the elastic modulus
E = 120 GPa, the shear wave velocity cs = 1187 m/s, the dilatation
coefficient α = 6.75 · 10−6 1/K. For the martensitic phase we choose,
respectively, E = 60 GPa, cs = 1055 m/s, with the same density and
dilatation coefficient as above.

To compare the results of the modeling with the experimental data,
the calculations of the particle velocity were performed for different im-
pact velocities by means of the thermomechanical model of the phase
transition front propagation [15, 16] with a Courant number equal to 1.
In the homogeneous case this gives the exact solution of the hyperbolic
system of equations (5). The results of the comparison are given in Fig.3,
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where the predictions of simple model corresponding to a linear kinetic
relation are also shown. It should be noted that the mobility coefficients
in the linear model are calculated by means of the values of the driving
force determined by the present numerical model and experimental data
by Escobar and Clifton. Therefore, two different straight lines are based
on the results of different experiments. As one can see, the linear models
cannot approximate the experimental points related to remaining experi-
ments. At the same time, the particle velocity computed by means of the
present model is practically independent of the impact velocity, which has
better correspondence with the available experimental data.

6 Conclusions

A thermodynamically consistent form for the finite volume numerical
method for thermoelastic wave and front propagation is proposed in the
paper. Such a reformulation provides the applicability of the Godunov
type numerical schemes based on averages of field variables to the de-
scription of non-equilibrium situations. The non-equilibrium description is
fulfilled by using contact quantities instead of numerical fluxes. The con-
tact quantities satisfy the thermodynamic consistency conditions which
generalize the classical equilibrium conditions.

As shown, numerical simulations performed by means of the modified
finite-volume method capture both the theoretical predictions of decay of
the wave amplitude by a damaged layer and the experimentally observed
difference between tangential impact velocity and transversal particle ve-
locity, which is indicative for the existence of phase transformation in a
slab.
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LAINETE JA FRONTIDE NUMBRILINE MODELLEERIMINE
STRUKTUREERITUD MATERJALIDES:
TERMODÜNAAMILINE LÄHENEMINE

Artiklis on esitatud termodünaamilisel kooskõlal põhineev lõplike mah-
tude numbriline meetod termoelastsete lainete ja frontide leviku kirjel-
damiseks. Selline esitus lubab väljamuutujate keskmistel baseeruvad Go-
dunovi tüüpi numbrilisi skeeme rakendada mittetasakaaluliste pingeseisun-
dite kirjaldamiseks. Taoline mittetasakaaluline kirjeldus kasutab num-
brilise voolu asemel kontaktsuurusi. Need suurused rahuldavad termodü-
naamilise kooskõla tingimusi, üldistades klassikalisi tasakaalutingimusi.

Võtmesõnad: termoelastsed lained, faasiüleminekute frondid, lõplike
mahtude meetod, diskreetsete süsteemide termodünaamika.
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