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3 To whom correspondence should be addressed. Arkadi Berezovski, Centre for
Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia; e-mail: Arkadi.Berezovski@cs.ioc.ee

Abstract–A thermodynamically consistent finite-volume numerical
algorithm for thermoelastic phase-transition front propagation is de-
scribed. A simple mathematical model of martensitic phase transi-
tion front propagation is considered. The phase transition front is
viewed as an ideal mathematical discontinuity surface. The problem
remains nonlinear even in this simplified description that requires a
numerical solution. A non-equilibrium description of the process is
provided by means of non-equilibrium jump relations at the moving
phase boundary, which are formulated in terms of contact quanti-
ties. The same contact quantities are used in the construction of
a finite-volume numerical scheme. The additional constitutive in-
formation is introduced by a certain assumption about the entropy
production at the phase boundary. Results of numerical simulations
show that the proposed approach allows us to capture experimental
observations in agreement with theoretical predictions in spite of the
idealization of the process.

Keywords: finite volume methods; martensitic phase transforma-
tions; moving phase boundary; thermomechanical modelling

1 Introduction

The propagation of waves and phase-transition fronts in thermoelastic media
is governed by the same field equations and equations of state (at least in the
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integral formulation). However, while these equations are sufficient for the de-
scription of thermoelastic waves, that is not the case for the phase transition
fronts. It is well-known that initial-boundary-value problems, formulated ac-
cording to the usual principles of continuum mechanics, can suffer from a lack
of uniqueness of the solution when the body is composed of a multiphase mate-
rial 1. The solution in this case involves a propagating phase boundary which
separates the austenite from the martensite; the speed VN of this interface re-
mains undetermined by the usual continuum theory.

The propagation of phase interfaces in shape-memory alloys under applied
stress is an experimentally observed phenomenon 2,3. It is also connected with
a superelastic effect. Originally in the austenitic phase, martensite is formed,
upon loading, beyond a certain stress level, resulting in the stress plateau shown
in Fig. 1. The cause of stability of martensite at sufficiently high temperature is
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Figure 1: Experimental stress-strain relation for Cu-Zn-Al shape-memory alloy
(from 4).

the applied stress, and therefore upon unloading martensite becomes unstable
and reverts to its parent phase gaining its undeformed shape. This effect, which
causes the material to be extremely elastic, is known as pseudoelasticity or
superelasticity. Therefore, the propagation of phase interfaces results in a non-
classical nonlinear behavior of shape-memory alloys.

The simplest possible formulation of the stress-induced phase transition front
propagation problem is given by Abeyaratne and Knowles 5 in the case of an
isothermal uniaxial motion of a slab in small-strain approximation. The phase
front is represented by a jump discontinuity separating the different austenite
and martensite branches of the N-shaped local stress-strain curve. A shift of
the martensitic branch of the curve is provided by the incorporation of a trans-
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formation strain, which is considered as an experimentally determined material
constant.

From a thermodynamic point of view, a phase transition is a non-equilibrium
process; entropy is produced at the moving phase boundary at a rate fSVN

6.
The entity fS is called the driving force and may be expressed in terms of the
limiting stress, deformation gradient and free-energy on the two sides of the
interface 1,5−8. The uniqueness of the solution is provided by the introduction
of two additional constitutive relations: a kinetic law for a driving force that
establishes the speed of the transformation front

VN = φ(fS), (1)

where a constitutive function φ provides the continuum theory with a suitable
description of the lattice transformation mechanism, and a nucleation criterion
1,6,9.

The prescription of the kinetic relation, of the nucleation criterion, and of the
transformation strain means that the material behavior is completely known,
and the numerical simulation is needed only for adjusting the values of coef-
ficients of the model. In the considered model, the local equilibrium approx-
imation is exploited in spite of the irreversibility of the phase transformation
process. Moreover, to perform simulations of practical examples we need to
move to a numerical approximation. In this case, we face a non-equilibrium
behavior of finite-size discrete elements or computational cells. It is clear that
the local equilibrium approximation is not sufficient to describe such a behavior.

Therefore a non-equilibrium description of the stress-induced phase-transi-
tion front propagation is preferable. To do this we need to choose an appropriate
non-equilibrium theory. Our choice is influenced by numerical aspects of the
modelling. This means that we need to have not only the non-equilibrium
description of states of (finite volume) computational elements, but also the
description of their interactions. In our opinion, the best possibility is provided
by the thermodynamics of discrete systems 10. In this theory, in addition to
usual local equilibrium quantities, so-called contact quantities are introduced
to provide the description of interactions between the systems. Therefore, the
thermodynamic state space is extended.

The next step is to establish the non-equilibrium jump conditions at the
phase interface. Each model of the stress-induced martensitic phase-transition
front propagation uses its own jump relations 11−15. All of them differ from the
classical equilibrium jump relations, which consist in the case of thermoelastic
solids in the continuity of temperature and chemical potential and the continuity
of the normal Cauchy traction at the phase boundary 16,17.

We apply the non-equilibrium jump relations 18, which should be fulfilled for
each pair of adjacent discrete elements. Supplementary constitutive information
is introduced by means of certain assumptions about the entropy production at
the phase boundary.

In order to include the non-equilibrium jump relations in the simulation,
we apply a procedure which is similar to that proposed in 19, but with a com-
pletely different numerical algorithm, based on the wave-propagation method

3



20,21. However, we have made certain essential improvements to be able to ap-
ply it in the case of moving phase boundaries, e.g. In effect, we reformulate the
algorithm in terms of contact quantities and non-equilibrium jump relations.
The non-equilibrium jump relations are different for processes with and without
entropy production 22,23. This gives us the possibility to apply distinct non-
equilibrium jump relations in the bulk (for the wave propagation without the
entropy production) and at the phase boundary (where entropy is produced,
since the phase transition is dissipative). The latter plays the role of a kinetic
relation without an explicit specification. A thermodynamic criterion of initia-
tion of the phase transition process follows from the simultaneous satisfaction
of both distinct non-equilibrium jump relations at the phase boundary.

The chapter is organized as follows. The governing equations and jump re-
lations for the simplest problem of a uniaxial phase transition front propagation
in a slab are given in the Section 2. A discrete representation of the formulated
problem is presented in the Section 3. Non-equilibrium jump relations at the
phase boundary are introduced in the Section 4. The finite volume numerical
scheme is discussed in the Section 5. The algorithm is presented in terms of
contact quantities. We describe in detail how the contact quantities can be com-
puted in the bulk and at the phase boundary. Results of numerical simulations
and a comparison with available experimental data are given in the Section 6.
Finally, main conclusions are presented in the Section 7.

2 Simple example: uniaxial motion of a slab

In order to explain some of the key ideas with a minimal mathematical complex-
ity, it is convenient to work in an essentially one-dimensional setting. Following
Abeyaratne and Knowles 5, we consider a slab, which in an unstressed reference
configuration occupies the region 0 < x1 < L, −∞ < x2, x3 < ∞, and assume
an uniaxial motion of the form

ui = ui(x, t), x = x1, (2)

where t is time, xi are the spatial coordinates, ui are the components of the
displacement vector. In this case, we have only three non-vanishing components
of the strain tensor

ε11 =
∂u1

∂x
, ε12 = ε21 =

1

2

∂u2

∂x
, ε13 = ε31 =

1

2

∂u3

∂x
. (3)

Particle velocities associated with Eq. (2) are

vi(x, t) =
∂ui

∂t
. (4)

Without loss of generality, we can set ε13 = 0, v3 = 0 because of zero initial
and boundary conditions for these components. Then we obtain uncoupled
systems of equations for longitudinal and shear components which express the
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balance of linear momentum and the time derivative of the Duhamel-Neumann
thermoelastic constitutive equation, respectively, 22,23:

∂(ρ0(x)v1)

∂t
−

∂σ11

∂x
= 0,

∂

∂t

(

σ11

λ(x) + 2µ(x)

)

−
∂v1

∂x
= m(x)

∂θ

∂t
, (5)

and
∂(ρ0(x)v2)

∂t
−

∂σ12

∂x
= 0,

∂

∂t

(

σ12

µ(x)

)

−
∂v2

∂x
= 0, (6)

which are complemented by the heat conduction equation

C(x)
∂θ

∂t
=

∂

∂x

(

k(x)
∂θ

∂x

)

. (7)

Here σij is the Cauchy stress tensor, ρ0 is the density, θ is temperature, and
C is the heat capacity per unit volume for a fixed deformation. The dilatation

coefficient α is related to the thermoelastic coefficient m, and the Lamé coeffi-
cients λ and µ by m = −α(3λ + 2µ). The indicated explicit dependence on the
point x implies that the body is materially inhomogeneous in general.

The above description is well-known and these systems of equations can be
solved separately. We focus our attention on the system of equations for shear
components (Eq. 6) because the martensitic phase transformation is expected
to be induced by shear.

2.1 Jump relations

To consider the possible irreversible transformation of a phase into another one,
the separation between the two phases is idealized as a sharp, discontinuity
surface S across which most of the fields undergo finite jumps. Let [A] and
< A > denote the jump and mean value of a discontinuous field A across S, the
unit normal to S being oriented from the “minus” to the “plus” side:

[A] := A+
− A−, < A >:=

1

2
(A+ + A−). (8)

Let Ṽ be the material velocity of the geometrical points of S. The material
velocity V is defined by means of the inverse mapping X = χ−1(x, t), where X
denotes the material points 24

V :=
∂χ−1

∂t

∣

∣

∣

∣

x

. (9)

The phase transition fronts considered are homothermal (no jump in temper-
ature; the two phases coexist at the same temperature) and coherent (they
present no defects such as dislocations). Consequently, we have the following
continuity conditions 25,26:

[V] = 0, [θ] = 0 at S. (10)
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Jump relations associated with the conservation laws in the bulk are formulated
according to the theory of weak solutions of hyperbolic systems. Thus the jump
relations associated with the balance of linear momentum and balance of entropy
read 25,26

ṼN [ρ0v2] + [σ12] = 0, ṼN [S] +

[

k

θ

∂θ

∂x

]

= σS ≥ 0, (11)

where S is entropy, ṼN is the normal component of the material velocity of the
points of S, and σS is the entropy production at the interface. As shown in 25,26,
the entropy production can be expressed in terms of the driving force fS such
that the dissipation at the interface reads

fSṼN = θSσS ≥ 0, (12)

where θS is the temperature at S. In addition, the balance of material forces at
the interface between phases is found in the form 25,26

fS = −[W ]+ < σij > [εij ] , (13)

where W is the free energy per unit volume.

2.2 Dynamic loading

In a dynamic problem we look for piecewise smooth velocity and stress fields
v2(x, t), σ12(x, t) for inhomogeneous thermoelastic materials, which obey the
following initial and boundary conditions:

σ12(x, 0) = v2(x, 0) = 0, for 0 < x < L, (14)

v2(0, t) = v0(t), σ12(L, t) = 0, for t > 0, (15)

and satisfy the following field equations

∂(ρ0(x)v2)

∂t
−

∂σ12

∂x
= 0,

∂

∂t

(

σ12

µ(x)

)

−
∂v2

∂x
= 0, (16)

and jump conditions

ṼN [ρ0v2] + [σ12] = 0, [V] = 0, [θ] = 0 at S, (17)

fS = −[W ]+ < σij > [εij ] , fSṼN ≥ 0. (18)

It should be noted that Eqs. (17) and (18) are useless unless we could de-
termine the value of the velocity of the phase boundary. A possible solution
is the introduction of an additional constitutive relation between the material
velocity at the interface and the driving force in the form of a kinetic relation
1,6,9. Since the nonlinearity of the formulated problem due to the moving phase
boundary requires a numerical solution, we postpone the introduction of the
supplementary constitutive information to the numerical approximation.
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3 Discrete representation

3.1 Integral balance laws for discrete elements

Following the main ideas of finite volume numerical methods 21, we divide the
body in a finite number of identical elements of elementary volume ∆x. Inte-
gration over the finite volume element of Eq. (16) yields the following set of
integral forms:

∂

∂t

∫

∆x

ρ0v2dx = (σ12)
right

− (σ12)
left

, (19)

∂

∂t

∫

∆x

σ12dx = (µv2)
right

− (µv2)
left

. (20)

3.2 Averaged quantities and fluxes

Introducing averaged quantities at each time step

v̄2 =
1

∆x

∫

∆x

v2dx, σ̄12 =
1

∆x

∫

∆x

σ12dx, (21)

and numerical fluxes at the boundaries of each element

F ≈
1

∆t

∫ tl+1

tl

σ12 dt, G ≈
1

∆t

∫ tl+1

tl

µv2 dt, (22)

we are able to write a finite-volume numerical scheme for Eqs. (19), (20) for a
uniform grid (n) in the form (l denotes time steps)

(v̄2)
l+1
n − (v̄2)

l
n =

∆t

ρn∆x

(

(F right)l
n − (F left)l

n

)

, (23)

(σ̄12)
l+1
n − (σ̄12)

l
n =

∆t

∆x

(

(Gright)l
n − (Gleft)l

n

)

. (24)

The main difficulty in the construction of a numerical scheme is the proper
determination of the numerical fluxes F,G 21. In fact our discrete elements are
not in equilibrium, especially in the presence of phase transformation. Even
if we can associate the averaged quantities with local equilibrium parameters,
we still need to have a description of the non-equilibrium states of discrete
elements. Moreover, we need also a description of interaction between these
non-equilibrium elements, because classical equilibrium conditions are not valid
in the case of fast propagation of sharp phase interfaces through the material
during a stress-induced martensitic phase transformation.

4 Non-equilibrium jump conditions at the phase

boundary

We start with the classical equilibrium conditions at the phase boundary. The
classical equilibrium conditions at the phase boundary consist, for single-com-
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ponent fluid-like systems, in the equality of temperatures, pressures and chem-
ical potentials in the two phases, that is

[θ] = 0 or

[

(

∂U

∂S

)

V,M

]

= 0, (25)

[p] = 0 or

[

(

∂U

∂V

)

S,M

]

= 0, (26)

[µ] = 0 or

[

(

∂U

∂M

)

S,V

]

= 0, (27)

where U is the internal energy, M is mass, V is volume, p is pressure, and µ is
the chemical potential.

In the considered homothermal case, the continuity of temperature at the
phase boundary still holds, and the continuity of the chemical potential can
be replaced by the expression for the non-zero driving force (Eq. 18). What
we need is to change the equilibrium condition for pressure (Eq. 26). In non-
equilibrium, we expect that the value of internal energy of an element differs
from its equilibrium value 27

U = Ueq + Uex, (28)

where the excess energy Uex is difference between the non-equilibrium and equi-
librium values. Therefore, we can make a direct generalization of classical equi-
librium condition for pressure using the excess energy

[

(

∂(Ueq + Uex)

∂V

)

S,M

]

= 0. (29)

However, the obtained jump relation corresponds to a fixed entropy at the
boundary. At the same time, it is well understood that the martensitic phase
transformation is a dissipative process, which involves entropy change. There-
fore, we propose to replace the jump relation (Eq. 29) by another non-equilibrium
jump relation. Our choice of the fixed variables is influenced by the stability
conditions for single-component fluid-like systems 28

[

(

∂(Ueq + Uex)

∂V

)

θ,M

]

= 0,

[

(

∂(Ueq + Uex)

∂V

)

p,M

]

= 0. (30)

The last two jump relations differ from Eq. (29) only by fixing different variables
in the corresponding thermodynamic derivatives.

To be able to exploit the jump relations, we need to have a more detailed de-
scription of non-equilibrium states than by only introducing the energy excess.
The most convenient description of the non-equilibrium states may be obtained
by means of the thermodynamics of discrete systems 10, where the thermody-
namic state space is extended by means of so-called contact quantities.
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4.1 Contact quantities

We still deal with single-component fluid-like systems. A discrete system 10 is
considered as a domain separated from its equilibrium environment by a contact
surface. In a Schottky system per se, the interaction between the system and
the environment consists of heat, work and mass exchanges. These exchange
quantities allow us to define so-called contact quantities. For instance, consider-
ing the heat exchange Q̇, the contact temperature, Θ, is defined by the inequality
10:

Q̇

(

1

Θ
−

1

T ∗

)

≥ 0 (31)

for vanishing work and mass exchange rates. Here T ∗ is the thermostatic tem-
perature of the equilibrium environment. From Eq. (31) it follows that Q̇ and
the bracket have always the same sign. We now suppose that there exists ex-
actly one equilibrium environment for each arbitrary discrete system for which
the net heat exchange between them vanishes. Then Eq. (31) determines the
contact temperature Θ of the system as the thermostatic temperature T ∗ of
the system’s environment for which this net exchange vanishes. The dynamic

pressure, p and chemical potential, µ are defined analogously 10:

V̇ (p − p∗) ≥ 0, Ṁ (µ∗

− µ) ≥ 0, (32)

where V̇ is the time rate of volume, and Ṁ is the time rate of mass.
The contact quantities so defined together with common local equilibrium

variables provide a complete thermodynamic description of non-equilibrium
states of a separated discrete system.

In the required extension to the thermoelastic case, the state of each element
is identified with the thermodynamic state of a discrete system associated with
it, each element being assumed in local equilibrium. In thermoelasticity, in
addition to Θ and Eq. (31), which governs heat exchange, we must define a
contact dynamic stress tensor Σij . Analogously to Eq. (31) that holds for
ε̇ij = 0 we have

∂εij

∂t
(Σij − σ∗

ij) ≥ 0, (33)

for vanishing heat and mass exchange rates. Here σ∗

ij is the Cauchy stress tensor
in the environment.

In the thermoelastic case, the thermodynamic derivatives which we should
exploit instead of

(

∂U
∂V

)

θ
and

(

∂U
∂V

)

p
are 28:

(

∂Ē

∂εij

)

θ

= −θ̄

(

∂σ̄ij

∂θ

)

ε

+ σ̄ij ,

(

∂Ē

∂εij

)

σ

= θ̄

(

∂S̄

∂εij

)

σ

+ σ̄ij , (34)

where E is the internal energy per unit volume and overbars denote the local
equilibrium values.

Contact quantities are assumed to be connected with the excess energy in a
similar way

(

∂Eex

∂εij

)

θ

= −Θ

(

∂Σij

∂θ

)

ε

+ Σij ,

(

∂Eex

∂εij

)

σ

= Θ

(

∂Sex

∂εij

)

σ

+ Σij , (35)
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where the interaction entropy Sex is still undetermined. Using Eqs. (34), (35)
we obtain from Eq. (30) that the parameters of the adjacent non-equilibrium
elements of a thermoelastic continuum should satisfy the thermodynamic con-
sistency conditions, the first of which is valid for all processes with no entropy
production

[

−θ̄

(

∂σ̄ij

∂θ

)

ε

+ σ̄ij − Θ

(

∂Σij

∂θ

)

ε

+ Σij

]

· Nj = 0, (36)

and the second one corresponds to any inhomogeneity accompanied by entropy
production

[

θ̄

(

∂S̄

∂εij

)

σ

+ σ̄ij + Θ

(

∂Sex

∂εij

)

σ

+ Σij

]

· Nj = 0. (37)

Here Nj are components of the unit normal at the boundary of a discrete ele-
ment. Now we are able to describe the non-equilibrium states of discrete ele-
ments and to exploit the non-equilibrium jump relations, if we can determine
the values of contact quantities, which can be done at least numerically.

5 Finite-volume numerical scheme

5.1 Contact quantities in the bulk

We need now to solve the system of equations (Eq. 16). First we apply Eq.
(36) to determine the values of the contact quantities in the absence of phase
transformation. Since shear components of the stress tensor are independent of
temperature, Eq. (36) reduces to

[σ̄12 + Σ12] = 0. (38)

In the uniaxial case we have at the interface between elements (n − 1) and (n)

(Σ+
12)n−1 − (Σ−

12)n = (σ̄12)n − (σ̄12)n−1. (39)

This relation should be complemented by the kinematic condition between ma-
terial and physical velocity 24, which in the small-strain approximation become

[v + V] = 0. (40)

Assuming that the jump of the contact velocity is determined by the second
term of Eq. (40)

[V] = [V], (41)

we obtain in the uniaxial case

(V+
2 )n−1 − (V−

2 )n = (v̄2)n − (v̄2)n−1. (42)

At this step we need to introduce constitutive relations between contact stresses
and contact velocities. Our choice is motivated by the possible reduction to the
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wave-propagation algorithm. In fact, introducing the relations between contact
stresses and contact velocities

(

V
−

2

)

n
= −

(

Σ−

12

)

n

ρncn

,
(

V
+
2

)

n−1
=

(

Σ+
12

)

n−1

ρn−1cn−1

, c =

√

µ

ρ
, (43)

we obtain then a linear system of equations for the unknown contact velocities

(

V
+
2

)

n−1
−

(

V
−

2

)

n
= (v̄2)n − (v̄2)n−1, (44)

(

V
+
2

)

n−1
ρn−1cn−1 +

(

V
−

2

)

n
ρncn = (σ̄12)n − (σ̄12)n−1. (45)

The corresponding numerical scheme (23), (24) can be represented as

(σ̄12)
l+1
n − (σ̄12)

l
n =

∆t

∆x
µn

(

(V+
2 )l

n − (V−

2 )l
n

)

. (46)

(v̄2)
l+1
n − (v̄2)

l
n =

∆t

∆x

1

ρn

(

(Σ+
12)

l
n − (Σ−

12)
l
n

)

, (47)

The two relations (Eqs. (44) and (45)) express together a characteristic prop-
erty for the cell-centered numerical fluxes in the conservative wave-propagation
algorithm 29, whose advantages we can therefore exploit. However, phase tran-
sitions are always accompanied by the production of entropy. Hence we need to
apply another non-equilibrium jump relation at the phase boundary.

5.2 Contact quantities at the phase boundary

Suppose that the interface between two thermoelastic phases is placed between
elements numbered (p − 1) and (p). For the left element adjacent to the phase
boundary, the contact quantities (Σ−

12)p−1 at the left boundary of the element
can be determined within the above described numerical procedure. However,
we need a more careful consideration for values of the contact stresses (Σ+

12)p−1

at the right side of the element which corresponds to the phase boundary. Sim-
ilarly, for the right element adjacent to the phase boundary, we need to deter-
mine the values of (Σ−

12)p. The corresponding procedure is based on the non-
equilibrium jump relation (Eq. 37) that is specified in the isothermal uniaxial
case to be

[

θ̄

(

∂S̄

∂ε12

)

σ

+ σ̄12 + Σ12

]

= 0. (48)

Here we should make certain assumption about the entropy production at the
phase boundary. The simplest one is the continuity of contact stresses at the
phase boundary

[Σ12] = 0. (49)

Another relation follows from the coherency conditions for the material velocity
(Eq. 10) which can be expressed in the small-strain approximation as follows

[V2] = 0. (50)
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In terms of the contact stresses, the Eq. (50) yields

(Σ+
12)p−1

ρp−1cp−1

+
(Σ−

12)p

ρpcp

= 0. (51)

It follows from the Eqs. (49) and (51) that the values of contact stresses vanish
at the phase boundary

(Σ+
12)p−1 = (Σ−

12)p = 0. (52)

Now all the contact quantities at the phase boundary are determined, and we
can update the state of the elements adjacent to the phase boundary.

The material velocity at the interface is determined by means of the jump
relation for linear momentum (Eq. 17)1

V 2
N =

[σ̄12]

< ρ0 > [ε̄12]
, (53)

The direction of the front propagation is determined by the positivity of the
entropy production (Eq. 12)

σS =
fSVN

θS

≥ 0. (54)

The obtained relations at the phase boundary are used in the described numer-
ical scheme for the simulation of phase-transition front propagation.

6 Numerical simulations

6.1 Interaction of a plane wave with phase boundary

As a first example, we consider the interaction of a plane wave with a phase
boundary to confirm the results of phase-transition front propagation in the
one-dimensional case 30−32. The geometry of the problem is shown in Fig. 2.
The wave is excited at the left boundary of the computation domain by pre-
scribing a time variation of a component of the stress tensor. Upper and bottom
boundaries are stress-free, the right boundary is assumed to be rigid. The time-
history of loading is shown in Fig. 3. If the magnitude of the wave is high
enough, the phase transformation process is activated at the phase boundary.
The maximal value of the Gaussian pulse is chosen as 0.7 GPa. Material proper-
ties correspond to Cu-14.44Al-4.19Ni shape-memory alloy 33 in austenitic phase:
the density ρ = 7100 kg/m3, the elastic modulus E = 120GPa, the shear wave
velocity cs = 1187m/s, the dilatation coefficient α = 6.75 · 10−6 1/K.

It was recently reported 34 that elastic properties of martensitic phase of
Cu-Al-Ni shape-memory alloy after impact loading are very sensitive to the am-
plitude of loading. Therefore, for the martensitic phase we choose, respectively,
E = 60GPa, cs = 1055m/s, with the same density and dilatation coefficient
as above. As a first result, the stress-strain relation is plotted in Fig. 4 at a
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Figure 2: Plane wave: geometry.
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Figure 3: Loading time-history.
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Figure 4: Stress-strain behavior at a fixed point if the transformation strain is
taken into account.

fixed point inside the computational domain which was initially in the austenitic
state. As we can see in Fig. 4, the stress-strain relation is at first linear cor-
responding to elastic austenite. Then the strain value jumps along a constant
stress line to its value in the martensitic state due to phase transformation.
Afterwards both loading and unloading correspond to elastic martensite. The
value of the strain jump between straight lines, the slope of which is prescribed
by material properties of austenite and martensite, respectively, is determined
by the value of stress, that conforms to the critical value of the driving force, in
agreement with the barrier of potential that we have to overcome to go from one
phase to the other. Therefore, the stress value corresponding to the critical value
of the driving force can be associated with the transformation stress, and the
value of the strain jump corresponds to the transformation strain. We should
then take into account that martensite can exist only in the deformed state, i.e.
the martensitic line should start from a non-zero value of the transformation
strain. The result shown in the Fig. 4, looks very much like the stress-strain
dependence given in 5.

The obtained stress-strain relation at any fixed point results in overall pseu-
doelastic response of a specimen. The overall stress-strain behavior can be
compared with the dynamic experiment provided in 34 after adjusting the ap-
plied pulse width and shape (see Fig. 5) with an excellent agreement in the
phase transformation region.
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Figure 5: Stress-strain relation: comparison with experimental data from 34

(sample 1).
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Figure 6: Stress-strain behavior at a fixed point with full recovering of austenite.
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Figure 7: Stress-strain relation at the phase boundary: comparison with exper-
imental data from 4.

6.2 Hysteretic behavior

Up to now it was supposed that austenite is not recovered after unloading which
is not the case if the value of the reference temperature is above the onset of the
reverse transformation temperature. The inverse phase transformation should
occur immediately when the actual deformation of martensitic elements become
less than the transformation strain. Since the inverse transformation is governed
by another condition than the direct transformation, we obtain a hysteretic
stress-strain behavior (Fig. 6). Again, the overall stress-strain dependence can
be compared with experimental data. See Fig. 7, where the experimental data
of a quasi-static loading of a similar material with relatively high applied loading
rate (1 MPA/s) from 4 are given. The applied stress in this case was linearly
increased and the duration of the impulse was chosen to fit the experimental
data.

7 Conclusions

Attempts at numerical simulations of moving phase boundaries in solids meet
the problems with constitutive modeling of the nucleation criterion and kinetic
relation at the phase boundary, as well as with the construction of a proper
numerical algorithm. In spite of the accuracy and stability of the wave propa-
gation method for inhomogeneous media, its application to the phase-transition
problems is impossible unless we can predict the values of numerical fluxes at
the phase boundary. We have proposed to determine all the needed quanti-
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ties by means of non-equilibrium jump relations at the phase boundary, which
are presented by means of contact quantities derived from the thermodynamics
of discrete systems. In this case the construction of the algorithm is comple-
mented by the development of a thermodynamic model of phase-transition front
propagation.

Results of numerical simulations show that the proposed approach allows
us to reproduce experimental observations, in spite of the idealization of the
process.
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