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Abstract

Wave propagation in microstructured materials is directlyaffected by the exis-
tence of internal space scale(s) in the compound matter. In this case the classical
continuum theory cannot be used. In this paper based on the Mindlin model, the
balance laws for macro- and microstructure are formulated separately. Using the
slaving principles relating macro- and microdisplacements, the governing equa-
tions are derived for a single- and two-scale (scale within scale) cases. These
equations exhibit hierarchical properties assigning the wave operators to inter-
nal scales. In terms of macrodisplacements, higher-order dispersive terms appear
having a clear physical background (microinertia, wave speed in microstructure)
related to the scale of the microstructure. Full, approximated (corresponding to
hierarchical models), and simplified dispersion relationsare derived and analysed
to demonstrate the validity of the hierarchical governing equations. Linear theory
is based on the quadratic free energy function, in nonlineartheory the cubic terms
should also be taken into account. The corresponding governing equation includes
nonlinearities in both macro- and microscale. Such consistent modelling opens up
new possibilities to Nondestructive Testing (NDT) of material properties.



1 Introduction

Materials used in contemporary high technology are characterized often by their
complex structure in order to satisfy many requirements in practice. This concerns
polycrystalline solids, ceramic composites, alloys, functionally graded materials,
granular materials, etc. Often one should also account for the damage effects, ie
materials are still usable when they have microcracks. All that shows the existence
of intrinsic space-scales in matter, like the lattice period, the size of a crystalline
or a grain, and the distance between microcracks. This scale-dependence should
also be taken into account in governing equations. The classical theory of the
continuous media is built up using the assumption of the smoothness of continua.
The continua (materials) we are interested in, contain irregularities with one or
more internal scales and therefore the notion ”microstructured materials” is used.
Clearly the complex dynamic behaviour of such microstructured materials cannot
be explained by the classical theory of continua.

The more detailed description between classical and nonclassical theories of
continua is given by Pastrone [elsewhere in this volume], here we restrict our-
selves only to basic principles needed for modelling dynamical processes.

The cornerstones for describing dynamical processes of microstructured ma-
terials at intensive and high-speed deformations are the following:

(i) non-classical theory of continua able to account for internal scales;

(ii) hierarchical structure of waves due to the scales in materials;

(iii) nonlinearities caused by large deformation and character of stress-strain re-
lations.

Within the theories of continua the problems of irregularities of media have
been foreseen a long time ago by the Cosserats and Voigt and more recently by
Mindlin (1964), Eringen (1966) and others. The elegant mathematical theories
of continua with voids or with vector microstructure, of continua with spins of
Cosserat continum or micromorphic continuum, etc. have beenelaborated since,
see overviews by Capriz (1989), Eringen (1999). Clearly everyirregularity (or
inclusion) creates an additional stress field around it. Consequently the most gen-
eral approach in modelling should be the presentation of allthe conservation laws
and constitutive equations taking this stress field into account.

The straight-forward modelling of microstructured solidsleads to assigning all
the physical properties to every volume elementdV in a solid introducing so the
dependence on material coordinatesXk. Then the governing equations include
implicitly space-dependence parameters but due to the complexity of the system
the governing equations should be solved numerically. Another probably much
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more effective way is to separate macro- and microstructurein continua. Then the
conservation laws for both structures should be separatelyformulated (Mindlin
1964, Eringen 1966, Eringen 1999), or the microstructural quantities are sepa-
rately taken into account in one set of conservation laws (Maugin 1993). The last
case uses the concept of pseudo-momentum and material in homogeneity force.
Separating the macro- and microstructure gives two possibilities: either to con-
sider both structures inertial or to suppose the microstructural quantities to behave
noninertially. The first case is exactly what has been done byMindlin (1964) and
Eringen (1966, 1999), the second case leads to the formalismof internal variables
(Maugin 1990, Maugin and Muschik 1994).

The second pillar mentioned above is the hierarchy of waves.The concept of
hierarchy of waves is introduced by Whitham (1974).

High intensities of external forces and high deformation rates (high speed of
deformation) dictate the need to consider nonlinearities in governing equations.
One should distinguish between geometrical (large deformation) and physical
(stress-strain relation) nonlinearities (see Engelbrecht 1997). The physical nonlin-
earities are also called material nonlinearities and may bedescribed by the approx-
imation of the strain energy including to the usual second powers the higher order
(the third, the fourth ...) terms. These problems for microstructured solids have
been analysed, for example, by Erofeeyev (2003) - see also references therein.
The nonlinear theory needs also a clear distinction betweenmaterial and spatial
coordinates.

In terms of wave characteristics, there are many physical effects due to mi-
crostructure and its possible structural changes in the wave field. In addition, the
influence of nonlinearities causes nonadditivity of other physical effects. Leaving
aside more complicated effects like phase transition, kinetic localization of dam-
age, shear bands, etc., even the basic dissipative and dispersive effects are strongly
influenced by nonlinearities. There are many studies concerning the dissipative
effects combined with nonlinearities (Nunziato, Janno ?).

Dispersive and nonlinear effects combined may lead to celebrated solitary
waves. The Korteweg-de Vries equation includes quadratic nonlinearity and cubic
dispersion and served for more than 100 years as a model case for the balance of
dispersion and nonlinearity. The soliton concept has formed a new paradigm in
mathematical physics. When we come to microstructured materials then situation
is not so simple. There still seem to be discrepancies between various mathemat-
ical models concerning the dispersion relation. In this context also the discrete
modelling of crystal lattices is used (Brillouin 1953, Askar1985, Maugin 1999).
The continuum models (Erofeeyev 2003, Porubov 2003) have been elaborated
with various levels of accuracy.

We have previously analysed dissipative effects in microstructured materials
(Engelbrecht, Cermelli, Pastrone 1999), nonlinearities inmicroscale (Engelbrecht
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Pastrone 2003) and general dispersive effects (Engelbrecht et al 2004).
Here in this paper we concentrate our attention on the description of disper-

sive effects in microstructured solids following the consistent theory of nonclas-
sical continua. This allows us to unite two important concepts – influence of
microstructure on dispersion from one side and the concept of hierarchies from
another side. The third pillar – nonlinearities – will take more space and its con-
sistent description will be published elsewhere. Here we touch this problem only
briefly.

The paper is organized as follows. Section 2 involves the derivation of the ba-
sic single-scaled model. The Mindlin (1964) assumption on strain in microstruc-
ture is used and the governing equations derived using the Euler-Lagrange for-
malism. It is shown that the model is consistent within the framework of pseu-
domomentum (Maugin, 1993). Section 3 describes the modelling for the case of
two-scale (scale within the scale) microstructure. In Section 4 the hierarchy of
waves is explained following Whitham’s (1974) idea. Section5 is devoted to the
dispersion analysis and Section 6 - to nonlinear models. A discussion and further
prospects are given in Section 7.

2 The basic single-scaled model

2.1 Governing equations

Here we follow Mindlin (1964) who has interpreted the microstructure ”as a mole-
cule of a polymer, a crystallite of a polycrystal or a grain ofa granular mate-
rial”. This microelement is taken as a deformable cell. Notethat if this cell is
rigid, then the Cosserat model follows. The displacementu of a material particle
in terms of macrostructure is defined by its componentsui ≡ xi − Xi, where
xi, Xi(i = 1, 2, 3) are the components of the spatial and material position vec-
tors, respectively. Within each material volume (particle) there is a microvolume
and the microdisplacementu′ is defined by its componentsu′i ≡ x′i − X ′

i, where
the origin of the coordinatesx′i moves with the displacementu. The displace-
ment gradient assumed to be small. This leads to thebasic assumptionof Mindlin
(1964) – ”the microdisplacement can be expressed as a sum of products of spec-
ified functions ofx′i and arbitrary functions ofxi andt”. The first approximation
is then

u′j = x′k ϕkj (xi, t). (1)

The microdeformationis

∂u′j
∂x′i

= ∂′i u
′

j = ϕij. (2)

4



Further we consider the simplest 1D case and drop the indicesi, j dealing withu
andϕ only. The indicest andx denote differentiation.

The fundamental balance laws for microstructured materials can be formulated
separately for macroscopic and microscopic scales (Eringen 1999). We show here
how the balance laws can be derived from the Lagrangian (Mindlin 1964, Pastrone
2003)

L = K −W, (3)

formed from the kinetic and potential energies

K =
1

2
ρu2

t +
1

2
Iϕ2

t , W = W (ux, ϕ, ϕx), (4)

whereρ is the density andI - microinertia.
The corresponding Euler-Lagrange equations have the general form

(

∂L

∂ut

)

t

+

(

∂L

∂ux

)

x

−
∂L

∂u
= 0, (5)

(

∂L

∂ϕt

)

t

+

(

∂L

∂ϕx

)

x

−
∂L

∂ϕ
= 0. (6)

Inserting the partial derivatives

∂L

∂ut

= ρut,
∂L

∂ux

= −
∂W

∂ux

,
∂L

∂u
= 0,

∂L

∂ϕt

= Iϕt,
∂L

∂ϕx

= −
∂W

∂ϕx

,
∂L

∂ϕ
= −

∂W

∂ϕ
, (7)

into eq (5), (6) we arrive to equations of motion

ρutt −

(

∂W

∂ux

)

x

= 0, Iϕtt −

(

∂W

∂ϕx

)

x

+
∂W

∂ϕ
= 0. (8)

Here we denote

σ =
∂W

∂ux

, η =
∂W

∂ϕx

, τ =
∂W

∂ϕ
, (9)

and recogniseσ as the macrostress (Piola stress),η as the microstress andτ as the
interactive force.

The equations of motion (8) take now the form

ρutt = σx, (10)
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Iϕtt = ηx − τ. (11)

These equations can be compared with the analogous equations deduced in a dif-
ferent way by Capriz (1989).

The simplest potential energy function describing the influence of a microstruc-
ture is a quadratic function

W =
1

2
αu2

x + Aϕux +
1

2
Bϕ2 +

1

2
Cϕ2

x (12)

with α,A,B,C – constants. Inserting (12) into (9) and the result into eqs (10),
(12), the governing equations take the form

ρutt = αuxx + A ψx, (13)

Iϕtt = C ϕxx − A ux −Bϕ. (14)

Equations (13), (14) with proper initial and boundary conditions form the basis
for the further analysis.

2.2 Balance of pseudomomentum

The analysis above is based on two balance laws of momentum, expressed by eqs
(10), (11). Here we show that this presentation is equivalent to the balance of
pseudomomentum according to Maugin (1993).

We multiply eq (13) byux and eq (14) byϕx that yields after rearranging

(ρ ut ux)t =
1

2
(ρ u2

t )x +
1

2
(α u2

x)x + A ϕx ux, (15)

(I ϕt ϕx)t =
1

2
(I ϕ2

t )x +
1

2
(C ϕ2

x)x − A ux ϕx −
1

2
(B ϕ2)x. (16)

Summing up eq (15) and (16), we obtain

(ρ ut ux + I ϕt ϕx)t =
1

2
(ρ u2

t + I ϕ2

t )x +
1

2
(α u2

x)x +

+
1

2
(C ϕ2

x)x −
1

2
(B ϕ2)x. (17)

After rearranging, eq (17) yields

(ρ ut ux + I ϕt ϕx)t =
1

2
(ρ u2

t + I ϕ2

t )x +
1

2
(α u2

x +

+2 A ϕ ux +B ϕ2 + C ϕ2

x)x − (A ϕ ux)x − (B ϕ2)x. (18)
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Last equations can be represented in terms of pseudomomentum and Lagrangian
density as follows

− Pt = Lx + 2Wx − (A ϕ ux)x − (B ϕ2)x, (19)

where the pseudomomentum is defined asP = −(ρ ut ux + I ϕt ϕx), and the
Lagrangian density isL = 1

2
(ρ u2

t + I ψ2

t ) −W .
From another side,

(ux σ + ϕ τ + ϕx η)x = (α u2

x + 2 A ϕ ux +B ϕ2 + C ϕ2

x)x = 2Wx. (20)

This means that

(ux σ + ϕx)x = (α u2

x + 2 A ϕ ux +B ϕ2 + C ϕ2

x)x − (ϕ τ)x =

2Wx − (A ϕ ux)x + (B ϕ2)x. (21)

Substituting the last relation into equation (19), we will have

− Pt = Lx + (ux σ + ϕx η)x. (22)

If we now define the Eshelby stress as

b = −(L + ux σ + ϕx η), (23)

we can represent the equation (22) in the form of balance of pseudomomentum

Pt − bx = 0. (24)

3 The two-scale model

We follow now the same idea as in Section 2 but generalise it for a two-scale
situation. In physical terms it means that every deformablecell of the microstruc-
ture includes new deformable cells at a smaller scale. So instead of the system
macrostructure-microstructure (see Section 2), the material is supposed to be com-
posed by the macrostructure including microstructure 1 at acertain scale that in-
cludes microstructure 2 at a certain smaller scale. A qualitative sketch of such a
material is shown in Fig 1. Then the corresponding displacements are

uj (xi, t), (25)

u′j = x
′

k ϕkj (xi, t), (26)

u
′′

j = x
′′

k ψ̄kj (x′i, t), (27)
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respectively, wherex′k, x
′′

k correspond to the local coordinates within respective
cells. As far as we are interested in motion on the macrolevel, we assume relation
(27) to be replaced by

u
′′

= x
′′

k ψkj (xi, t). (28)

The gradients, i.e. deformations are then easily found

∂ u′j
∂ x′i

= ϕij,
∂ u

′′

j

∂ x
′′

i

= ψij. (29)

The balance laws for a 1D case (cf. (10), (11)) are

ρutt = σx, (30)

I1 ϕtt = η1x − τ1, (31)

I2 ψtt = η2x − τ2, (32)

where indices are dropped. In this case we have to deal with two microstresses
η1, η2, and two interactive forcesτ1, τ2. Microinertias areI1, I2, respectively. All
the stress components and forces are determined from the free energyW by rela-
tions:

σ =
∂W

∂ux

, η1 =
∂W

∂ϕx

, η2 =
∂W

∂ψx

, τ1 =
∂W

∂ϕ
, τ2 =

∂W

∂ψ
. (33)

In order to start explaining the dispersive effects, we assume the quadratic free
energy function

W =
1

2
αu2

x + Aϕux +
1

2
B1ϕ

2 +
1

2
C1ϕ

2

x +

+ A1ϕxψ +
1

2
B2ψ

2 +
1

2
C2ψ

2

x, (34)

whereα,Ai, Bi, Ci, i = 1, 2 are constants. Introducing (33) and (34) into (30),
(31), (32), the system of governing equations takes the form:

ρutt = αuxx + Aϕx, (35)

I1 ϕtt = C1ϕxx − Aux −B1ϕ+ A1ψx, (36)

I2 ψtt = C2ψtt − A1ϕx −B2ψ. (37)
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4 Hierarchies of waves

4.1 Preliminaries

Whitham (1974) has described the complicated wave systems where a scale pa-
rameterδ plays an important role. Depending on its limit values(δ → ∞, δ →
0), one or another wave operator governs the process asymptotically. The full
system so includes a hierarchy of waves with certain stability conditions (see
Whitham, 1974). Here we show that waves in microstructured materials exhibit
the hierarchical behaviour governed by a parameter which isthe ratio of the char-
acteristic scale of a microstructure over the wavelength ofthe excitation.

4.2 Single scale

Let the scale of the microstructure bel and the excitation characterised by its am-
plitudeU0 and wavelengthL. Then we can introduce the following dimensionless
variables and parameters

U = uU−1

0
, X = xL−1, T = tc0L

−1, δ = l2L2, ǫ = U0L
−1, (38)

wherec2
0

= α/ρ. We also suppose thatI = ρl2I∗, C = l2C∗, whereI∗ is
dimensionless andC∗ has the dimension of stress. NoteI is scaled againstρ and
the difference of densities is embedded inI∗.

Next, the system (13), (14) is rewritten in its dimensionless form and then
the slaving principle (Christiansen et al. 1992, Porubov 2003) is used. It means in
principle that we determineϕ in terms ofUx using a series representation. Indeed,
eq (14) yields

ϕ = −(ǫA/B) UX − (δ/B)(αI∗ϕTT − C∗ϕXX). (39)

If we considerϕ = ϕ0 + δϕ1 + ..., we get

ϕ0 = −(ǫA/B) UX , (40)

ϕ1 = (ǫαAI∗/B∗)UXTT − (ǫAC∗/B2)UXXX). (41)

Inserting (40), (41) into the governing system in its dimensionless form, we
get finally in terms ofU as follows (cf. Engelbrecht and Pastrone 2003)

UTT =

(

1 −
c2A
c2
0

)

UXX +
c2A
c2B

(

UTT −
c2
1

c2
0

UXX

)

XX

(42)
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wherec2
1

= C/I, c2A = A2/B ρ, c2B = B L2/I. Note thatc2B involves the
scalesL and l and c2A includes the interaction effects between the macro- and
microstructure (through the parameter A). It means that

c2A
c2B

=
A2

B2
I∗δ. (43)

So, eq (42) reflects clearly the hierarchical nature of wave propagation in mi-
crostructured solids: ifc2A/c

2

B is small then waves are governed by the properties
of macrostructure, if howeverc2A/c

2

B is large then waves ”feel” more microstruc-
ture. Note that in absence of the interaction between macro-and microstructure
(i.e. when A = 0), in terms ofU the wave operator is simplyUTT − UXX .

It is of interest to restore the dimensions in order to compare the various ap-
proximations. First, the system (13), (14) of two 2nd order equations can be
represented also in the form of one 4th order equation:

utt =
(

c2
0
− c2A

)

uxx − p2
(

utt − c2
0
uxx

)

tt
+ p2 c2

1

(

utt − c2
0
uxx

)

xx
, (44)

wherep2 = I/B.
Equation (42), however, can be rewritten as

utt =
(

c2
0
− c2A

)

uxx − p2 c2A
(

utt − c2
1
uxx

)

xx
. (45)

It is obvious that the approximated model (45) which displays clearly the hier-
archical structure, neglectsutttt completely while the influence ofuttxx is different
in (44) and (45). What is important – in this approximation theeffects of inertia
of microstructure and wave velocity in pure microstructureare taken into account.
There are certainly other approximations possible. From lattice theory (see, for
example Maugin 1999) the governing equation in its simplestform is

utt = c2
0
uxx + 1/12 c2

0
a2 uxxxx. (46)

wherea is the distance between the particles. This must be comparedwith

utt =
(

c2
0
− c2A

)

uxx − p2 c2A c
2

1
uxxxx (47)

resulting from eq (45). In case of periodic structures (Santosa and Symes 1991)
the governing equation corresponds to the dispersion relation

ω(k) = Ω1 k +
1

6
ǫ2 Ω3 k

3 + ..., (48)

and takes the form

utt = Ω2

1
uxx +

1

3
Ω1 Ω3 p

2 uxxxx. (49)
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Hereω andk are the frequency and the wave number, respectively,Ω1 andΩ3

are related to densities, elastic moduli, and impedances(Ω1 < c1, Ω3 < 0) andc1
is the velocity in the leading structure whileǫ is the small parameter andp is here
related to the cell size (cf. withl in our case). If only the effect of microinertia is
retained (Wang and Sun 2002) then in our notations the governing equation reads

utt =
(

c2
0
− c2A

)

uxx − p2 c2A uttxx. (50)

The dispersion analysis below (Section 5) shows the difference between the
various models.

4.3 Multiple scales

We apply now the same reasoning as above to the system (35), (36), (37) - the
balance laws in terms ofu (macrostructure),ϕ (microstructure 1), andψ (mi-
crostructure 2). In order to do so, dimensionless variablesare introduced

U = u/U0, X = x/L, T = tc0/L,
ǫ = U0/L, δ1 = l2

1
/L2, δ2 = l2

2
/L2,

I1 = ρ l2
1
I∗
1
, I2 = ρ l2

2
I∗
2
,

C1 = l2
1
C∗

1
, C2 = l2

2
C∗

2
, A1 = l A∗

1
,

(51)

whereU0 andL are the amplitude and the characteristic length of the excitation
while l1 andl2 are the scales of microstructures whilec2

0
= α/ρ. HereI∗

1
, I∗

2
are

dimensionless andA∗

1
, C∗

1
, C∗

2
have the dimensions of stress. Note thatI1 andI2

are scaled againstρ and possible differencies on densities of microstructuresare
embedded inI∗

1
andI∗

2
, respectively.

Substituting (51) into eqs (35), (36), (37) we obtain

UTT = UXX +
A

αε
ϕX , (52)

ϕTT =
C∗

1

α I∗
1

ϕXX −
1

δ1

Aǫ

αI∗
1

UX −
B1

αI∗
1

ϕ+
1

δ1

A∗

1
δ
1/2

2

αI∗
1

ψX , (53)

ψTT =
C∗

2

α I∗
2

ψXX −
1

δ
1/2

2

A∗

1

αI∗
2

ϕX −
1

δ2

B2

αI∗
2

ψ, (54)

Using the presence of small parametersδ1 andδ2, we use slaving principle
(Christiansen et al. 1992, Porubov 2003) for determining first ψ(ϕ) from eq (54)
and thenϕ(UX) from eq (53). Assuming

ψ = ψ0 + δ2 ψ1 + ... (55)
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we obtain from eq (54)

ψ = −δ
1/2

2

A∗

1

B2

ϕx + δ
3/2

2

αA1

B2

2

ϕTTX − δ
3/2

2

C∗

2
A∗

1

B2

2

ϕxxx. (56)

Now we assume

ϕ = ϕ0 + δ1 ϕ1 + ... (57)

and by making use ofψ(ϕ) determined by relation (56) we obtain from (53)

ϕ = −
Aǫ

B1

UX + δ1
αǫI∗

1
A

B2

1

(

UTTX −
C∗

1

αI∗
1

UXXX

)

+

+ δ2
ǫ(A∗

1
)2A

B2

1
B2

UXXX − δ2

2

αǫ(A∗

1
)2AI∗

2

B2

1
B2

2

UTTXXX +

+ δ2

2

ǫ(A∗

1
)2AC∗

2

B2

1
B2

2

UXXXXX (58)

Finally, by making use ofϕ(U) from (58), eq (52) yields:

UTT = (1 − b) UXX + δ1 [a UTT − (d− δ2 f)UXX ]XX −

− δ2

2
[h UTT − g UXX ]XXXX , (59)

where

b =
A2

α B1

, a =
A2 I∗

1

B2

1

,

d =
A2 C∗

1

B2

1
α
, f =

(A∗

1
)2 A2

B2

1
B2 α

,

h =
A2 (A∗

1
)2 I∗

2

B2

1
B2

2

, g =
A2 C∗

2
A∗

1

B2

1
B2

2

.

Equation (59) is the sought hierarchical equation in terms of macrodisplace-
mentU where microstructures are accounted for by special wave operators. In
order to compare the result with the basic system (35), (36),(37), and also with
the results of Section 4.2 we represent here also the hierarchical equation in terms
of dimensional variables and parameters. This has the following form:

utt =
(

c2
0
− c2A

)

uxx +

+ c2A p
2

1

(

utt − (c2
1
− c2B) uxx

)

xx
−

−c2A p
2

2
q2

(

utt − c2
2
uxx

)

xxxx
(60)

wherec2A = A2/(B1 ρ), c
2

B = A2

1
/(B2 I1), p

2

1
= I1/B1, p

2

2
= I2

2
/B2,

q2 = A2

1
/(B1 B2). Clearlyc2B = q2/p2.
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5 Dispersion

5.1 General

Internal scales of microstructured solids lead to the dispersive effects. It is also
quite clear from governing equation derived in Section 4. The presence of higher-
order derivatives in governing equations is a clear sign about dispersion. Below
we demonstrate how the various combinations of material parameters and wave
characteristics are reflected in dispersion relations. We start from the models with
dimensions and introduce then dimensionless wave number and frequency. The
solution is assumed in the form of a wave

u(x, t) = û exp [i (kx− ωt)] , (61)

with wave numberk and frequencyω, hereû is the amplitude.

5.2 Single scale

The corresponding mathematical models are presented in Section 4.2. Introducing
now (61) into equation (44), the dispersion relation is obtained.

ω2 =
(

c2
0
− c2A

)

k2 + p2
(

ω2 − c2
0
k2

) (

ω2 − c2
1
k2

)

= 0. (62)

The parameters involved are a time constantp and three characteristic velocities
c0, cA, c1. Instead ofcA the velocitycR = (c2

0
− c2A)

1/2 could be introduced as
a parameter since it has an obvious meaning for given wave process. Waves of
very low frequencies(ω ≪ p−1) are propagated at the velocitycR. The velocity
cA does not occur explicitly as a limit velocity. In order to reduce the number of
independent variables we introduce dimensionless quantities

ξ = p c0 k, η = p ω, (63)

and dimensionless parameters

γ1 = c1/c0, γA = cA/c0. (64)

Using these new quantities the full dispersion relation (44) assumes the form

η2 =
(

1 − γ2

A

)

ξ2 +
(

η2 − ξ2
) (

η2 − γ2

1
ξ2

)

. (65)

In the same way, the approximate differential equation (45)yields the dimension-
less dispersion relation

η2 =
(

1 − γ2

A

)

ξ2 − γ2

A

(

η2 − γ2

1
ξ2

)

ξ2. (66)
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Eventually the simplified differential equations (47) and (50) yield

η2 = (1 − γA) ξ2 + γ2

A γ
2

1
ξ4, (67)

η2 =
(

1 − γ2

A

)

ξ2 − γ2

A η
2 ξ2, (68)

respectively.
The full dispersion relation (65) represents two branches which, in general,

are distinct (see Fig. 2, 3). The upper, or ”optical” branch starts in theξ− η plane
at η = 1 with zero scope, while the lower, or ”acoustical” branch starts at the
origin with slopeγR = cR7c0 = (1 − cA)1/2. In the short wave limitξ ≫ 1 the
branches asymptotically approach the linesη = ξ andη = γ1ξ. If γA = 0, γ1 < 1
then in this exceptional case the branches meet in one point.Since the free energy
(12) should be positive definite, we have alwaysγA > 0. There is, however, no
physical restriction on the magnitude ofγ1. Figure 2 shows an example where
γ1 < γR < 1, and Fig. 3 - whereγR < γ1 < 1.

The important question is how the hierarchical model describes the situa-
tion. The corresponding dispersion relation (66) providesan approximation for
the acoustical branch only. The curve starts atξ = 0 with the slopeγR and, for
ξ → ∞, tends asymptotically to the lineη = γ1ξ providedγA = 0( see Fig. 3).
The special feature of this approximation is that it can be used over the whole
range of wave numbers, since it does not represent a short-wave or long-wave ap-
proximation. The underlying assumption is that the influence of the microstruc-
ture is small. In case in Fig. 3, the full and approximate dispersion relations agree
pretty well. The approximation gets worse if the parameterγA tends to zero and,
for γA = 0, degenerates to the nondispersive wave represented byη = ξ.

The simplified cases (67) and (68) give rather distorted results. The dispersion
curves deviate strongly from the correct course (see Fig. 4).

5.3 Multiple scales

The corresponding mathematical models are represented in Section 4.3. Introduc-
ing now (61) into equations (35), (36), (37), we obtain the dispersion relation

(

c2
0
k2 − ω2

) (

c2
1
k2 − ω2 + ω2

1

) (

c2
2
k2 − ω2 + ω2

2

)

−

− c2Bω
2

2
k2

(

c2
0
k2 − ω2

)

− c2Aω
2

1
k2

(

c2
2
k2 − ω2 + ω2

2

)

= 0. (69)

In addition, the hierarchical governing equation (60) gives, respectively:
(

c2
0
− c2A

)

k2 − ω2 + c2A p
2

1
k2

[(

c2
1
− c2B

)

k2 − ω2
]

+

+ c2A p
2

2
q2 k4

(

c2
2
k2 − ω2

)

= 0. (70)
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Hereω2

1
= 1/p2

1
, ω2

2
= 1/p2

2
. In further analysis, the dimensionless quantities

ξ = p1 c0 k, η = p1 ω, (71)

are used. Introducing (71) into eqs (69) and (70), the following dimensionless
dispersion relations are obtained, respectively:

(

ξ2 − η2
) (

γ2

1
ξ2 − η2 − η2

1

) (

γ2

2
ξ2 − η2 + η2

2

)

−

−γ2

B

(

η2

2
/η2

1

)

ξ2
(

ξ2 − η2
)

− γ2

A ξ
2

(

γ2

2
ξ2 − η2 + η2

2

)

= 0, (72)

(

γ2

R ξ
2 − η2

)

+ γ2

A ξ
2
(

γ2

Q ξ
2 − η2

)

+

+γ2

A γ
2

12
ξ4

(

γ2

2
ξ2 − η2

)

= 0. (73)

The parameters in (72), (73) denote the ratios of velocities:

γ1 = c1/c0, γ2 = c2/c0, γA = cA/c0, γB = cB/c0,

γR = cR/c0, γQ = cQ/c0, γ12 = (p1q)/(p
2c0), (74)

wherecR = (c2
0
− c2A)

1/2
, cQ = (c2

1
− c2B)

1/2 and the ratios of fixed frequencies

η1 = ω2

1
p2

1
= 1, η2 = ω2

2
p2

2
= p2

2
/p2

1
. (75)

6 Nonlinearities

As said in the Introduction, one should often account for large deformation or
complicated stress-strain relations that leads to nonlinear mathematical models.
This means that the full deformation tensor involves nonlinear terms and a more
complicated free energy functionW (higher-order than quadratic) should be used.
In this case dispersion effects described in Section 5 are combined with nonlinear
effects. Here we represent a brief description of the nonlinear theory based on
our earlier results (Engelbrecht. Pastrone 2003, Berezovski et al. 2003, Janno.
engelbrecht 2004).

We use here only single-scale model (10), (11). Based on estimations that
physical nonlinearity (stress-strain relation) is stronger than geometrical (full strain
tensor), we limit ourselves here only with the more complicated free energy func-
tion (see estimations in Engelbrecht, 1983). So instead of (12) we assume

W = W2 +W3, (76)

whereW2 is the simplest quadratic function (12)

W2 =
1

2
α u2

x + A ϕ ux +
1

2
B ϕ2 +

1

2
C ψ2 (77)
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andW3 includes nonlinearities on both the macro- and microlevel

W3 =
1

6
N u3

x +
1

6
M ϕ3

x. (78)

Using the relations (9) for determining the macrostress, the microstress and the
interactive force, we obtain

ρ utt = α uxx + Nux uxx + A ϕx (79)

I ϕtt = C ϕxx + Mϕx ϕxx − A ux − B ϕ (80)

(cf. with (13), (14)).
We introduce the same dimensionless variables and scaling as in Section 4,

addingM = M∗ l3. Following the same scheme as before, we come to the
following hierarchical equation (cf. eq (42)):

UTT =

(

1 −
c2A
c2
0

)

UXX +
1

2
k1

(

U2

X

)

X
+

+
c2A
c2B

(

UTT −
c2
1

c2
0

UXX

)

XX

+
1

2
k2

(

U2

XX

)

XX
. (81)

Here k1 = N ǫ/α, k2 = δ3/2 (A3 M∗ǫ) / (α B3) are the parameters ex-
pressing the strengths of physical nonlinearities on macro- and microscale, re-
spectively. It has been shown (Janno, Engelbrecht, 2004) that this model may
exhibit the balance between nonlinear and dispersive effects and therefore solitary
waves may exist. The similar situation arises for nonlinearwaves in rods (Sam-
sonov 2001, Porubov 2003) when the governing equation is of the type (81) with
k1 6= 0, k2 = 0.

7 Discussion

Nonclassical theory of continua takes the internal scales into account and is there-
fore able to describe microstructural effects. In the limitcase we could intuitively
understand that the microstructure is composed by (different) particles and so we
are actually dealing with crystal lattices (Brillouin 1953,Maugin 1999). In crys-
tal lattices the simplest case with identical particles leads to a dispersion relation
(Brillouin, 1953)

ω(k) = B| sin πkd| (82)

in our notation withB = const andd - the distance between the particles. Com-
paring (82) with dispersion relations of Section 5, it is obvious that our model
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grasps the essential convexity of the dispersion curve for smalles wavelengths
which correspond to the larger wavelengths in the particle model. Dispersion is
then normal, i.e.vph > vgr.

The model we have used for describing the microstructure is rather general: it
is based on Euler-Lagrange equations and it could be represented also in terms of
the balance of pseudo momentum (Maugin 1993).

The main value of the model is the explicit description of thehierarchy in
Whitham’s sense - the model is composed by two (or more) wave operators and
depending on the characteristics of the initial excitation(the wavelength), a cer-
tain wave operator governs the wave motion. The dispersion curves (Section 5)
demonstrate the transformation from one operator with its wave speed to another.
The wave speed in the material is affected by the microstructure (cf. eq (42) with
dimensionless velocity1− c2A/c

2

0
). Contrary to simplified models, the double dis-

persion (different termsUTTXX andUXXXX is of importance like in the case of
waves in rods (Samsonov 2001, Porubov 2003). In physical terms, the effects of
inertia of microstructure and wave velocity in pure microstructure both affect the
wave motion in general. This is not possible when deriving the continuum models
from the lattice theory using series representation.

The multi-scale model (59) actually prolongs the hierarchical properties of the
single-scale model (42). Indeed, the wave operators macro versus micro 1 and
micro 1 versus micro 2 are related by similar sign conventionand the wave ve-
locity in microstructure 1 is affected by properties of microstructure 2 similarly
like wave velocity in macro is affected by properties of microstructure 1. In ad-
dition, the scaling goes likeO(1), δ1, δ

2

2
, ... indicating the successive hierarchy in

the sequence of wave operators. It is clearly seen that higher-order dispersive
termsUXXXX , UXXXXXX , ... coincide with those derived from the lattice theory
(Maugin 1999) but mixed derivativesUTTXX , UTTXXXX , ... reflect the role of
microinertias.

The proper modelling is certainly important for solving direct problems, given
the initial excitation and calculating the wave field. Not less important are the
inverse problems when given the excitation and measured wave field, the material
properties must be determined. The methods of Nondestructive Testing (NDT) of
materials are all based on solving the inverse problems. Based on the essentially
more accurate mathematical model described in this paper, it is possible to deter-
mine the properties of the microstructured solids. The preliminary results in this
direction are obtained by Janno and Engelbrecht (2004) withregard to eq (42). It
is possible to determine 3 material parameters from 3 phase velocities which are
measured using various wavelengths.

The results above are also supported by numerical calculations (Berezovski et
al. 2003, Engelbrecht et al. 2004) but there are many studiesin progress.
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