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Abstract

Wave propagation in microstructured materials is direaffected by the exis-
tence of internal space scale(s) in the compound mattehidrcase the classical
continuum theory cannot be used. In this paper based on théliMimodel, the
balance laws for macro- and microstructure are formulagpasately. Using the
slaving principles relating macro- and microdisplacersgtiie governing equa-
tions are derived for a single- and two-scale (scale witltmley cases. These
equations exhibit hierarchical properties assigning tla@enoperators to inter-
nal scales. In terms of macrodisplacements, higher-oridpetsive terms appear
having a clear physical background (microinertia, wavesd@a microstructure)
related to the scale of the microstructure. Full, approx@dgcorresponding to
hierarchical models), and simplified dispersion relatiaresderived and analysed
to demonstrate the validity of the hierarchical governiqgaions. Linear theory
is based on the quadratic free energy function, in nonlitiesory the cubic terms
should also be taken into account. The corresponding gmgeegjuation includes
nonlinearities in both macro- and microscale. Such comsishodelling opens up
new possibilities to Nondestructive Testing (NDT) of matkeproperties.



1 Introduction

Materials used in contemporary high technology are chariaetd often by their
complex structure in order to satisfy many requirementsactce. This concerns
polycrystalline solids, ceramic composites, alloys, tiorally graded materials,
granular materials, etc. Often one should also accountdamage effects, ie
materials are still usable when they have microcracks.hall shows the existence
of intrinsic space-scales in matter, like the lattice perithe size of a crystalline
or a grain, and the distance between microcracks. This-siggdendence should
also be taken into account in governing equations. Theickstheory of the
continuous media is built up using the assumption of the $hm&ss of continua.
The continua (materials) we are interested in, contaigudagities with one or
more internal scales and therefore the notion "microstmect materials” is used.
Clearly the complex dynamic behaviour of such microstriedunaterials cannot
be explained by the classical theory of continua.

The more detailed description between classical and nssicl theories of
continua is given by Pastrone [elsewhere in this volumele lvee restrict our-
selves only to basic principles needed for modelling dyahprocesses.

The cornerstones for describing dynamical processes absircictured ma-
terials at intensive and high-speed deformations are fleviog:

(i) non-classical theory of continua able to account foeinal scales;
(i) hierarchical structure of waves due to the scales inemais;

(i) nonlinearities caused by large deformation and cbeaof stress-strain re-
lations.

Within the theories of continua the problems of irregulastof media have
been foreseen a long time ago by the Cosserats and Voigt arelrexently by
Mindlin (1964), Eringen (1966) and others. The elegant madtical theories
of continua with voids or with vector microstructure, of ¢imoma with spins of
Cosserat continum or micromorphic continuum, etc. have leédrorated since,
see overviews by Capriz (1989), Eringen (1999). Clearly eugegularity (or
inclusion) creates an additional stress field around it. Eguently the most gen-
eral approach in modelling should be the presentation dfhalconservation laws
and constitutive equations taking this stress field intmant

The straight-forward modelling of microstructured solieisds to assigning all
the physical properties to every volume eleméVitin a solid introducing so the
dependence on material coordinafés. Then the governing equations include
implicitly space-dependence parameters but due to the leaipof the system
the governing equations should be solved numerically. Aeoprobably much



more effective way is to separate macro- and microstruatuzentinua. Then the
conservation laws for both structures should be separ&tetyulated (Mindlin
1964, Eringen 1966, Eringen 1999), or the microstructutedrgities are sepa-
rately taken into account in one set of conservation lawsugta1993). The last
case uses the concept of pseudo-momentum and material ingeowity force.
Separating the macro- and microstructure gives two pdgi&bi either to con-
sider both structures inertial or to suppose the microsiratquantities to behave
noninertially. The first case is exactly what has been donglioglin (1964) and
Eringen (1966, 1999), the second case leads to the formafigmternal variables
(Maugin 1990, Maugin and Muschik 1994).

The second pillar mentioned above is the hierarchy of wavks.concept of
hierarchy of waves is introduced by Whitham (1974).

High intensities of external forces and high deformaticesdhigh speed of
deformation) dictate the need to consider nonlinearitiegaverning equations.
One should distinguish between geometrical (large defbomaand physical
(stress-strain relation) nonlinearities (see Engelliré@f7). The physical nonlin-
earities are also called material nonlinearities and mailelseribed by the approx-
imation of the strain energy including to the usual seconslgre the higher order
(the third, the fourth ...) terms. These problems for mitregured solids have
been analysed, for example, by Erofeeyev (2003) - see alsterees therein.
The nonlinear theory needs also a clear distinction betwesterial and spatial
coordinates.

In terms of wave characteristics, there are many physid¢attsfdue to mi-
crostructure and its possible structural changes in theewiteld. In addition, the
influence of nonlinearities causes nonadditivity of otheygical effects. Leaving
aside more complicated effects like phase transition,tkinecalization of dam-
age, shear bands, etc., even the basic dissipative andsiepeffects are strongly
influenced by nonlinearities. There are many studies coimgithe dissipative
effects combined with nonlinearities (Nunziato, Janno ?).

Dispersive and nonlinear effects combined may lead to cafet) solitary
waves. The Korteweg-de Vries equation includes quadratitimearity and cubic
dispersion and served for more than 100 years as a modelaratbe foalance of
dispersion and nonlinearity. The soliton concept has foram@ew paradigm in
mathematical physics. When we come to microstructured mgdhen situation
is not so simple. There still seem to be discrepancies betwe@ous mathemat-
ical models concerning the dispersion relation. In thisterinalso the discrete
modelling of crystal lattices is used (Brillouin 1953, Ask#&85, Maugin 1999).
The continuum models (Erofeeyev 2003, Porubov 2003) haea leéaborated
with various levels of accuracy.

We have previously analysed dissipative effects in micoostired materials
(Engelbrecht, Cermelli, Pastrone 1999), nonlinearitienicroscale (Engelbrecht
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Pastrone 2003) and general dispersive effects (Engelieeah2004).

Here in this paper we concentrate our attention on the gesuriof disper-
sive effects in microstructured solids following the catsnt theory of nonclas-
sical continua. This allows us to unite two important conisep influence of
microstructure on dispersion from one side and the condepietarchies from
another side. The third pillar — nonlinearities — will takema space and its con-
sistent description will be published elsewhere. Here wehdahis problem only
briefly.

The paper is organized as follows. Section 2 involves thevakgwn of the ba-
sic single-scaled model. The Mindlin (1964) assumptiontoairsin microstruc-
ture is used and the governing equations derived using ther-Eagrange for-
malism. It is shown that the model is consistent within trenfework of pseu-
domomentum (Maugin, 1993). Section 3 describes the modéitir the case of
two-scale (scale within the scale) microstructure. In Bect the hierarchy of
waves is explained following Whitham'’s (1974) idea. Sectas devoted to the
dispersion analysis and Section 6 - to nonlinear models sAudision and further
prospects are given in Section 7.

2 Thebasic single-scaled model

2.1 Governing equations

Here we follow Mindlin (1964) who has interpreted the midrasture "as a mole-
cule of a polymer, a crystallite of a polycrystal or a grainaofranular mate-
rial”. This microelement is taken as a deformable cell. Nobi if this cell is
rigid, then the Cosserat model follows. The displacemenita material particle
in terms of macrostructure is defined by its components x; — X;, where
x;, X;(i = 1,2,3) are the components of the spatial and material position vec-
tors, respectively. Within each material volume (parditkeere is a microvolume
and the microdisplacement is defined by its componentsg = z; — X!, where
the origin of the coordinates; moves with the displacement The displace-
ment gradient assumed to be small. This leads tb#sec assumptioof Mindlin
(1964) — "the microdisplacement can be expressed as a sunoduigs of spec-
ified functions ofz, and arbitrary functions aof, and¢”. The first approximation
is then

uy = Ty Prj (i, 1), (1)
The microdeformations

o',

5 =0 =u @

1



Further we consider the simplest 1D case and drop the indigetealing withu
andyp only. The indices andx denote differentiation.

The fundamental balance laws for microstructured mateciah be formulated
separately for macroscopic and microscopic scales (Enia§89). We show here
how the balance laws can be derived from the Lagrangian (Miad64, Pastrone
2003)

L=K-W, (3)

formed from the kinetic and potential energies
1 1
K = ipuf + 5[90?, W =W (ug, ¢, ¢z), 4)

wherep is the density and - microinertia.
The corresponding Euler-Lagrange equations have the gjeoem

oL oL oL
(5),* (50) ~ 5o K
oL oL oL
— | + —— =0. 6
(a(pt)t (a¢x)m 890 ( )
Inserting the partial derivatives
oL _ oL _ oW oL _
ouy Pt ou,  Ouy, Ou
oL oL ow 0L ow
— =1y, —=-— -t 7
Do TV D 0p. 09 O (")
into eq (5), (6) we arrive to equations of motion
ow ow ow
— = Ty — — =0.
PUyy ((‘9% ) ) 0, o (&Px)z + 90 0 (8)

Here we denote

ow ow ow
f— o 7’ [ —

aUx ) /r/ 8(,0:6 ) agp )
and recognise as the macrostress (Piola stregsas the microstress andas the

interactive force.
The equations of motion (8) take now the form

(9)

o

PUtt = Oy, (10)



Ty =n, —T. (11)
These equations can be compared with the analogous equdgdnced in a dif-
ferent way by Capriz (1989).

The simplest potential energy function describing the arilee of a microstruc-
ture is a quadratic function

1 1 1
W = §aui + Apu, + 53902 + 56’30920 (12)

with o, A, B, C' — constants. Inserting (12) into (9) and the result into ddg,(
(12), the governing equations take the form

Pl = QUgy + A 1/%7 (13)

Equations (13), (14) with proper initial and boundary caiotis form the basis
for the further analysis.

2.2 Balance of pseudomomentum

The analysis above is based on two balance laws of momenkmessed by eqs
(10), (11). Here we show that this presentation is equitaienhe balance of
pseudomomentum according to Maugin (1993).

We multiply eq (13) byu, and eq (14) byp, that yields after rearranging

1 1

(pus ug)e = 5(/) up)z + 5(04 ul), + A, Uy, (15)
1 2 1 2 1 2

(I o1 pz) = 5(1 sot)x+§(0 ©p)e — Aty %—5(390 )a- (16)

Summing up eq (15) and (16), we obtain
1 1
(P e+ 1oy pu)e = 5(pui + 1 07)a+ 5o ug)e +
1 1
+5(C ¢)a = 5(B 9% (17)
After rearranging, eq (17) yields

1 1
(pug e + 1 @1 02)y = 5([)U?+1s0?)m+ 5(@ uz +

F2A0u,+B*+C¢l)e — (Apus)s — (B @), (18)
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Last equations can be represented in terms of pseudomomemid Lagrangian
density as follows

—Pr= Lo+ 2We — (A uz)e — (B ¢7)a, (19)

where the pseudomomentum is definedPas= —(p uy u, + I ¢; p.), and the
Lagrangian density i€ = (p u? + I ) — W.
From another side,

(Up O+ QT+ 02 M)y = (au§+2Agpuz+Bg02+Ccp§)$:QWI. (20)
This means that

(Ug 0+ 0p)e = (@2 +2AQuy + B> +C@2), —(pT)e =
2W, — (Apuy), + (B goz)w. (21)

Substituting the last relation into equation (19), we wélvi

—Pr=Lo+ (Up 0+ 01 7)o (22)
If we now define the Eshelby stress as

b=—(L+u, o+ p. 1), (23)
we can represent the equation (22) in the form of balanceafgmmomentum

P, — b, = 0. (24)

3 Thetwo-scale model

We follow now the same idea as in Section 2 but generaliser iaftwo-scale
situation. In physical terms it means that every deformableof the microstruc-
ture includes new deformable cells at a smaller scale. Seadsof the system
macrostructure-microstructure (see Section 2), the na&tesupposed to be com-
posed by the macrostructure including microstructure lcartain scale that in-
cludes microstructure 2 at a certain smaller scale. A catalé sketch of such a
material is shown in Fig 1. Then the corresponding displasgmare

’LL]' (.1"1', t), (25)
u; = Ty rj (Tist), (26)



respectively, where, z} correspond to the local coordinates within respective
cells. As far as we are interested in motion on the macrolevehssume relation
(27) to be replaced by

1

U= gy (at). (28)
The gradients, i.e. deformations are then easily found

duj 0 u; B (29)
oz, TV oo

%

The balance laws for a 1D case (cf. (10), (11)) are

PUy = Oy, (30)
I o1 = Mo — 71, (31)
I Yy = nmow — T2, (32)

where indices are dropped. In this case we have to deal wiihhtigrostresses
m, 12, and two interactive forces, 7. Microinertias arel;, I, respectively. All
the stress components and forces are determined from #heriexgyil’ by rela-
tions:
ow ow ow ow ow (33)
= = —, 1= 5, To = —.

aux7 Uil a@z’ T2 8wx 1 680 2 81/1

In order to start explaining the dispersive effects, we a&sthe quadratic free
energy function

g =

1 1 1
W = 3 aul + Apu, + 531302 + éclgpi +

1 1
+Awm+§&W+§@%, (34)

wherea, A;, B;, C;,i = 1,2 are constants. Introducing (33) and (34) into (30),
(31), (32), the system of governing equations takes the:form

PUty = QlUgy + A%m (35)
[1 Pte = Cl(p:car - Au:c - Blgp + Alwaﬁa (36)
I Yy = Corpy — Ar1py — By, (37)



4 Hierarchies of waves

4.1 Preliminaries

Whitham (1974) has described the complicated wave systerasevéhscale pa-
rameters plays an important role. Depending on its limit valyés— oo, § —
0), one or another wave operator governs the process asyoatiiot The full
system so includes a hierarchy of waves with certain stghilbnditions (see
Whitham, 1974). Here we show that waves in microstructuretérnads exhibit
the hierarchical behaviour governed by a parameter whittreisatio of the char-
acteristic scale of a microstructure over the wavelength@gxcitation.

4.2 Singlescale

Let the scale of the microstructure band the excitation characterised by its am-
plitude U, and wavelengtiL. Then we can introduce the following dimensionless
variables and parameters

U=ulUy', X=xL", T=tel™", 6§=07L> e¢=UL"", (38)

wherec? = a/p. We also suppose thdt = pl*[*, C = [*C*, wherel* is
dimensionless an@™* has the dimension of stress. Ndtés scaled againgt and
the difference of densities is embedded in

Next, the system (13), (14) is rewritten in its dimensioalésrm and then
the slaving principle (Christiansen et al. 1992, Porubov®@®used. It means in
principle that we determing in terms ofU,. using a series representation. Indeed,
eq (14) yields

@Z—(EA/B) UX—<5/B)(CYI*Q0TT—C*Q0X){) (39)
If we considerp = ¢y + dpq + ..., we get
po = —(€A/B) Ux, (40)

01 = (eaAI" /B \Uxpr — (eAC* /B Uxxx). (41)

Inserting (40), (41) into the governing system in its dimenkess form, we
get finally in terms ofU as follows (cf. Engelbrecht and Pastrone 2003)

i i ci
Urr=(1-—=% ) Uxx+—5 (Urr — 5 Uxx (42)
&0 XX



wherec? = C/I, ¢4 = A?/Bp, ¢ = B L?/I. Note thatc% involves the
scalesL and/ and ¢ includes the interaction effects between the macro- and
microstructure (through the parameter A). It means that

A A%

2 = BQI ). (43)

So, eq (42) reflects clearly the hierarchical nature of wae@ggation in mi-
crostructured solids: if% /c% is small then waves are governed by the properties
of macrostructure, if howevef, /% is large then waves "feel” more microstruc-
ture. Note that in absence of the interaction between magrd-microstructure
(i.e. when A = 0), in terms ol/ the wave operator is simplj;r — Ux x.

It is of interest to restore the dimensions in order to coraphe various ap-
proximations. First, the system (13), (14) of two 2nd ordguations can be
represented also in the form of one 4th order equation:

uy = (g — ) tae = 1° (uee = G Uaw), +1° G (U — € Uaa) ., (44)
wherep? = I/B.
Equation (42), however, can be rewritten as

Ut = (C(Q) - Cil) Uz — P C?‘\ (u“ o Cf u”)m : (45)
Itis obvious that the approximated model (45) which displelgarly the hier-
archical structure, neglecis;;; completely while the influence af;... is different
in (44) and (45). What is important — in this approximation éfiects of inertia
of microstructure and wave velocity in pure microstructame taken into account.
There are certainly other approximations possible. Frdticéatheory (see, for
example Maugin 1999) the governing equation in its simgitash is

Uy = Co Uy + 1/12 €3 0% Uppn (46)
whereq is the distance between the particles. This must be compated
Uy = (cg — 0?4) Ugz — P° 4 Cllgpas (47)

resulting from eq (45). In case of periodic structures (8satand Symes 1991)
the governing equation corresponds to the dispersiorioelat

1
w(k):Qlk+ée2 Q3 k2 + ..., (48)
and takes the form
1
Ut = Q% Ugy + g Ql Q?) p2 Uzzza- (49)
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Herew andk are the frequency and the wave number, respectitglgnd(2;
are related to densities, elastic moduli, and impedafiees: ¢;, 23 < 0) andc;
is the velocity in the leading structure whilés the small parameter ands here
related to the cell size (cf. within our case). If only the effect of microinertia is
retained (Wang and Sun 2002) then in our notations the gmgaguation reads

uy = (¢§ — &) Uga — P° & Usta- (50)

The dispersion analysis below (Section 5) shows the difiereébetween the
various models.

4.3 Multiple scales

We apply now the same reasoning as above to the system (8)),(83) - the
balance laws in terms af (macrostructure)y (microstructure 1), and (mi-
crostructure 2). In order to do so, dimensionless variadlesntroduced

U=u/Uy, X==z/L, T=tc/L,
e=Uy/L, 00 =D2/L% & =12/I2
L=pBI L=plI;

Ci=0BC;, Co=13C;, A =I1A;,

(51)

whereU, and L are the amplitude and the characteristic length of the &iait
while [, andl, are the scales of microstructures whife= «/p. Herel;, I; are
dimensionless and;, C7, C5 have the dimensions of stress. Note thaand I,
are scaled againgtand possible differencies on densities of microstructares
embedded id; and/;, respectively.

Substituting (51) into egs (35), (36), (37) we obtain

A
Urr = Uxx + —opx, (52)
ae
o 1 Ae B 1 A%6)?
_ 1 _ 1 53
$IT aIstXX o alf X a1f¢+ o alf X, (53)
Cs 1 A 1 B,
= - 1 - 54

Using the presence of small parametérsand d,, we use slaving principle
(Christiansen et al. 1992, Porubov 2003) for determining fits>) from eq (54)
and thenp(Ux) from eq (53). Assuming

Y =1+ 02 Y1 + ... (55)
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we obtain from eq (54)

A A C3 A3
Y = —51/2 Oz + 53/2 2 21 YTTX — 53/2 2 3 * Paa- (56)
Bs Bs
Now we assume
o=@+ 01 p1+ ... (57)
and by making use af(y) determined by relation (56) we obtain from (53)
Ae aelfA Cy
Y=-7 UX 01 312 (UTTX - ol? UXXX) +
1
(A*) A ae(AN)2AL
+ 0o B;Bg Uxxx — 63 3%73222 Urrxxx +
€(A3)2ACS
+d; 3%7322 Uxxxxx (58)

Finally, by making use op(U) from (58), eq (52) yields:
Urr = (1 =0b) Uxx + 01 [a Upr — (d — 62 f)UXX]XX -

_53 [h UTT_gUXX]XXX)(; (59)
where
2 2 T
o A Y
OdBl B%
J— A% Cy = (A1)? A2
- Ba’ - B?Bya’
po AL G A
By By B B3

Equation (59) is the sought hierarchical equation in terfmmacrodisplace-
mentU where microstructures are accounted for by special waveatps. In
order to compare the result with the basic system (35), (36), and also with
the results of Section 4.2 we represent here also the hiecatequation in terms
of dimensional variables and parameters. This has thexwitpform:

U = (c?) — ci) Uy +
+ 0124 p% (utt - (C% - C%) ux:n)mm
_0124 pg q2 (utt - C% ux:c) (60)

TXXTT

wherec}, = A%/(Bi p), g = Al/(Bz ), pi = 1i/Bi1, p3 =13/Bs,
q2 _ A%/(B1 BQ). CIearchQB = q2/p2-
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5 Dispersion
51 General

Internal scales of microstructured solids lead to the d@pe effects. It is also
guite clear from governing equation derived in Section 4e presence of higher-
order derivatives in governing equations is a clear sigrualspersion. Below
we demonstrate how the various combinations of materiarpaters and wave
characteristics are reflected in dispersion relations. taf¢ fsom the models with
dimensions and introduce then dimensionless wave numlkfraguency. The
solution is assumed in the form of a wave

u(z,t) = texp [i (kx —wt)], (61)

with wave numbef and frequencw, hereu is the amplitude.

5.2 Singlescale

The corresponding mathematical models are presentediimB8dc2. Introducing
now (61) into equation (44), the dispersion relation is oisd.

W= (g —c4) K +p* (W= k) (W —cik®) =0. (62)

The parameters involved are a time constaand three characteristic velocities

co,ca,c1. Instead ofc, the velocitycy = (3 — 0124)1/2 could be introduced as
a parameter since it has an obvious meaning for given wawepso Waves of
very low frequenciesw < p~') are propagated at the velocity. The velocity
c4 does not occur explicitly as a limit velocity. In order to veg the number of
independent variables we introduce dimensionless questit

{=pcok, n=pw, (63)
and dimensionless parameters

"1 = c1/co, YA = ca/co. (64)
Using these new quantities the full dispersion relatior) @sumes the form

7= (1-71) €+ =€) P -1&). (65)

In the same way, the approximate differential equation yé&lyls the dimension-
less dispersion relation

”=01-7) &-7 (-1 &) & (66)
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Eventually the simplified differential equations (47) ab@)yield

= (1—v4) €+ & (67)
= (1-7) &-7%n¢e, (68)
respectively.

The full dispersion relation (65) represents two branchbghy in general,
are distinct (see Fig. 2, 3). The upper, or "optical”’ brantznts in the — n plane
atn = 1 with zero scope, while the lower, or "acoustical” branchrtstat the
origin with slopeygr = cg7cy = (1 — c4)'/2. In the short wave limit >> 1 the
branches asymptotically approach the lines £ andn = & Ifv4 =0,71 < 1
then in this exceptional case the branches meet in one [@imte the free energy
(12) should be positive definite, we have always> 0. There is, however, no
physical restriction on the magnitude ¢of. Figure 2 shows an example where
v < vr < 1,and Fig. 3 -whereyp < v, < 1.

The important question is how the hierarchical model dessrithe situa-
tion. The corresponding dispersion relation (66) providesapproximation for
the acoustical branch only. The curve startg at 0 with the slopeyy and, for
¢ — oo, tends asymptotically to the ling = ~,£ providedy, = 0( see Fig. 3).
The special feature of this approximation is that it can bedusver the whole
range of wave numbers, since it does not represent a shue-evdong-wave ap-
proximation. The underlying assumption is that the infleeatthe microstruc-
ture is small. In case in Fig. 3, the full and approximate €eisn relations agree
pretty well. The approximation gets worse if the parametgetends to zero and,
for v4 = 0, degenerates to the nondispersive wave represented-hy.

The simplified cases (67) and (68) give rather distortedtesthe dispersion
curves deviate strongly from the correct course (see Fig. 4)

5.3 Multiple scales

The corresponding mathematical models are representesttios 4.3. Introduc-
ing now (61) into equations (35), (36), (37), we obtain thepdrsion relation

(cg k? — w2) (cf K —w® + w%) (cg k? —w?+ wg) —

— cpwi K (K — w?) — Awi K (6 k* — w? + wi) = 0. (69)
In addition, the hierarchical governing equation (60) givespectively:

(0(2) — ci) E* —w? + & pl Kk [(c% — 023) K — w2] +
+ 4 ps ¢t kK (3 K —w?) =0. (70)
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Herew? = 1/p?, w3 = 1/p2. Infurther analysis, the dimensionless quantities

5 =P1 <o ku n =puw, (71)

are used. Introducing (71) into egs (69) and (70), the fakhgwdimensionless
dispersion relations are obtained, respectively:

E-n) & —n"—n) (BE—n"+m)—
—vp (/M) (€ —n") =R (BE —n"+n3) =0, (72)

(7R —7") + 758 (R —7)+
A & (E & —n') =0. (73)
The parameters in (72), (73) denote the ratios of velocities

Y1 = Cl/CO7 Yo = 62/607 YA = CA/COJ YB = CB/C()a
VR = cr/C, Yo =cqg/co, M2= (Pq)/(P*co), (74)

1/2

wherec, = (2 — 2)"? | co = (2 — 3)"? and the ratios of fixed frequencies

m=wipi=1, mn=uwsps=ps/pi. (75)

6 Nonlinearities

As said in the Introduction, one should often account fogéadeformation or
complicated stress-strain relations that leads to noatingathematical models.
This means that the full deformation tensor involves nadinterms and a more
complicated free energy functidfi (higher-order than quadratic) should be used.
In this case dispersion effects described in Section 5 arbieed with nonlinear
effects. Here we represent a brief description of the nealirtheory based on
our earlier results (Engelbrecht. Pastrone 2003, Bereretsd. 2003, Janno.
engelbrecht 2004).

We use here only single-scale model (10), (11). Based on atins that
physical nonlinearity (stress-strain relation) is strenpan geometrical (full strain
tensor), we limit ourselves here only with the more compéddree energy func-
tion (see estimations in Engelbrecht, 1983). So instea@l2)fWe assume

W =Wy + Wi, (76)
wherell; is the simplest quadratic function (12)
1 1 1
W2:§aufc+Ag0ux+§Bgo2+§C¢2 (77)
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andWjs includes nonlinearities on both the macro- and microlevel

1 1
WgzéNui—i-gMgpi. (78)
Using the relations (9) for determining the macrostress,nticrostress and the
interactive force, we obtain

puy = gy + Nugug + A gy (79)

(cf. with (13), (14)).

We introduce the same dimensionless variables and scading Section 4,
addingM = M* [*. Following the same scheme as before, we come to the
following hierarchical equation (cf. eq (42)):

S (vp-Gu +11<:(U2 ) (81)
C2 T 02 XX 2 2 XX XX
B 0 XX

Herek, = N ¢/a, ky = 8% (A% M*e) / (o B®) are the parameters ex-
pressing the strengths of physical nonlinearities on maanal microscale, re-
spectively. It has been shown (Janno, Engelbrecht, 20@4)ttiis model may
exhibit the balance between nonlinear and dispersivetsftaw therefore solitary
waves may exist. The similar situation arises for nonlingaves in rods (Sam-
sonov 2001, Porubov 2003) when the governing equation iseofyipe (81) with
1{71 7& 0, kQ = 0.

7 Discussion

Nonclassical theory of continua takes the internal scal@saccount and is there-
fore able to describe microstructural effects. In the lioaise we could intuitively

understand that the microstructure is composed by (diftgpgrticles and so we
are actually dealing with crystal lattices (Brillouin 1998augin 1999). In crys-

tal lattices the simplest case with identical particlesite® a dispersion relation
(Brillouin, 1953)

w(k) = B|sin 7wkd| (82)

in our notation withB = const and/ - the distance between the particles. Com-
paring (82) with dispersion relations of Section 5, it is s that our model
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grasps the essential convexity of the dispersion curve famalles wavelengths
which correspond to the larger wavelengths in the particdeleh Dispersion is
then normal, i.ev,, > vg,.

The model we have used for describing the microstructuratieer general: it
is based on Euler-Lagrange equations and it could be regesbalso in terms of
the balance of pseudo momentum (Maugin 1993).

The main value of the model is the explicit description of therarchy in
Whitham’s sense - the model is composed by two (or more) waeeat@rs and
depending on the characteristics of the initial excita(itne wavelength), a cer-
tain wave operator governs the wave motion. The dispersioves (Section 5)
demonstrate the transformation from one operator with #genspeed to another.
The wave speed in the material is affected by the microstractct. eq (42) with
dimensionless velocity — ¢ /). Contrary to simplified models, the double dis-
persion (different term&/;rxx andUy x xx iS of importance like in the case of
waves in rods (Samsonov 2001, Porubov 2003). In physicaigethe effects of
inertia of microstructure and wave velocity in pure micrasture both affect the
wave motion in general. This is not possible when derivirggdbntinuum models
from the lattice theory using series representation.

The multi-scale model (59) actually prolongs the hierazahproperties of the
single-scale model (42). Indeed, the wave operators masmsus micro 1 and
micro 1 versus micro 2 are related by similar sign convenséind the wave ve-
locity in microstructure 1 is affected by properties of nestructure 2 similarly
like wave velocity in macro is affected by properties of rogtructure 1. In ad-
dition, the scaling goes lik&(1), 4,, 6, ... indicating the successive hierarchy in
the sequence of wave operators. It is clearly seen that haglkler dispersive
termsUx xxx, Uxxxxxx, .- coincide with those derived from the lattice theory
(Maugin 1999) but mixed derivativeSrxx, Urrxxxx, .- reflect the role of
microinertias.

The proper modelling is certainly important for solvingedit problems, given
the initial excitation and calculating the wave field. Notdamportant are the
inverse problems when given the excitation and measured field, the material
properties must be determined. The methods of Nondestetittisting (NDT) of
materials are all based on solving the inverse problems. Bais¢he essentially
more accurate mathematical model described in this papsmpossible to deter-
mine the properties of the microstructured solids. Theimpiahry results in this
direction are obtained by Janno and Engelbrecht (2004)neghrd to eq (42). It
is possible to determine 3 material parameters from 3 pheleeities which are
measured using various wavelengths.

The results above are also supported by numerical calook{Berezovski et
al. 2003, Engelbrecht et al. 2004) but there are many stinl@®gress.
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