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COMPLEXITY IN MECHANICS∗

Abstract. Contemporary complexity science deals with problems involving many variables
which interact with each other (and with the environment) in such a way that new quality
appears. Nonlinearity is a cornerstone of complex systems which as a rule are far from
equili brium and exhibit properties of emergence of coherent structures, possibly over many
scales. Generalized continuum theories incorporate intrinsic microstructural and nonlinear
effects in the mechanical behaviour of solids. The effects like emergence of solitary waves
and solitary wave structures, scale-dependence and wave hierarchy clearly demonstrate that
contemporary mechanics exhibits many complex effects. In this paper, nonlinear waveprop-
agation in microstructured solids is analysed as a significant example of complexity. The
basic models are derived from the canonical (material) momentum equation where the inter-
action forces are separated. Novel concepts like dual internal variables and wave hierarchy
are described. Besides solid mechanics, some insights into fluid dynamics and biophysics
are also given and somenumerical results presented.

1. Introduction

The long history of mechanics has revealed many brilli ant ideas which have shaped
the modern understanding of the world. The great scholars like Archimedes, Galil ei,
Newton and others were later followed by Euler, Lagrange, and Laplace, just to men-
tion a few names amongmany. One of the characteristic features of scientists in the
past was their commitment to many problemsof mechanics, mathematics, optics, etc.
Solidsandfluidswereoften both treated alikeby Newtonin hisPrincipia. Many prob-
lems solved by our predecessorsare now classical examples, such as the movement of
planets, the three-bodysystem, movement of apendulum, wavesonthe freesurfaceof
fluid — this list can easily beprolonged. Closer to thepresent time, specialisationwas
needed in order to overcome amyriad of specific details and nowadays the communi-
tiesaround onefield usually meet at specialised conferencesand publish their findings
in specialised journals (IUTAM congresses are one exception). Armin Toffler, in his
prefaceto the book byPrigogine and Stengers [42], says: “One of the most highly
developed skill s in contemporary Western civili zation is dissection: the splitti ng-up of
problemsinto their smallest possible components. We aregoodat it. So good, weoften
forget to put thepiecesback together again” . Is this really so? What happenswhen we
put thepiecesback together?

The ideaof putting thingsback together isnot new. Said Aristotle: “Thewhole
is more than the sum of the parts” . And again it is mechanics that hasbrought thisold
knowledgeto our contemporary understanding. Thebasic notionthat “haschanged the
world” is nonlinearity. Althoughthe inverse-square law of gravitation was introduced
by Newton, it was much later that H. Poincaré understood its importance when he
solved the three-body problem. But only in the mid-twentieth century did concepts
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li ke solitons, chaotic attractors and other members of the nonlinear “zoo” make clear
that new quality is born if constituentsof a whole interact with each other nonlinearly.
Nonlinear dynamics has brought many new ideas not only to mechanics but also to
many other fields — biology and chemistry, econophysics and social studies, not to
mention many other physical processes. In this way, the development spiral involves
many fieldstogether just likein thepast. Thereasonis simple— theworld around usis
nonlinear andsimilar patternsemergein variousprocesses, similar methodscan beused
in studies of various fields, and a language uniting different studies is understandable
to the general community of scientists. In short, the world is complex and complexity
research, as it is now understood, is an intrinsically transdisciplinary enterprise. A
complex system iscomposed of its constituents, small elements that interact with each
other resulting in emergent properties of the system as a whole. The citation above
by A. Toffler reflected thegeneral understanding, but themonograph byPrigogine and
Stengers[42] itself isaproof of the contrary and describesthe earlier ideasof complex
systems. More recent treatises are, for example, the monographsby Christiansen and
Moloney [9], andNicolisandNicolis [40].

In what follows, themechanicsof solidsisanalysed from theviewpoint of com-
plexity. The analysisismostly based onstudiesof CENS(Centrefor Nonlinear Studies,
Instituteof Cyberneticsat Talli nnUniversity of Technology) duringthe last decade al-
throughthepreliminary ideaswere already presented earlier [14]. Thestarting point is
abrief overview on general theoriesof microstructuredsolidswith aspecial attentionto
modelli ngthehidden internal structure. Themathematical modelsderivedaccordingto
novel concepts reflect the hierarchical structure of solids at various scales. Nonlinear-
ities are briefly described in order to bring the mathematical models closer to reality.
In this presentation, two main questions are actually addressed. The first is: how to
model deformation waves in solids with their physical structure, i.e. taking into ac-
count constituents. Thesecondrefers to the linksbetween the constituents, or closer to
mechanics, the forcesbetween the constituents. The result isnot surprising— nonlin-
ear mechanicsisa typical exampleof complexity. Thelast part of thispaper isdevoted
to general problemsand/or specific examplesdrawn from the analysisof waves.

2. Basic theory

2.1. Motivation

The conventional theories of continua describe the behaviour of solids and materi-
als respectively. In reality, however, materials are always characterized by a certain
microstructure at various scales (see[23]). The character of a microstructure can be
regular (like in laminated composites) or irregular (like in polycrystalli nesolids or al-
loys). Furthermore, regularity and irregularity may be combined like for some FGMs.
The characteristic scale l of a microstructure must always be compared with the spa-
tial scale L of an excitation. Intuitively speaking, if L ≫ l then the excitation “does
not feel” the microstructure; if, however, L ∼ l then the excitation “ feels” strongly the
microstructure.
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In general terms, the starting point for describing a microstructure could be
either the discrete or the continuum approach. In the discrete approach the volume
elements are treated as point masses with interaction [1, 34, 36]. The crucial point
then is to assume the functional dependencies of interactive forces between discrete
masses using energetic considerations. The discrete approach is often used for lami-
nated composites and then the effective stiffnesstheory may usefully occur [45, 50].
As a result, the governing equations describe a certain continuum the properties of
which are related to the initial discrete system [36]. From the viewpoint of continua,
straightforwardmodelli ngleadsto the assignment of all thephysical propertiesto every
volume element dV in a solid, which means introducing dependenceon space coordi-
nates. Thus, the governingequations are so complicated that they can be solved only
by numerical methods.

Althoughthe discrete approach seems to be appropriate for modelli ng the mi-
crostructure, the question of how to determine the interactive forces in order to reflect
material properties is difficult to answer. That is why the generalized continuum theo-
ries seem to bemoreplausible.

Generalised continuum theories extend conventional continuum mechanics for
incorporatingintrinsic microstructural effects in themechanical behaviour of materials
[8, 21, 22, 37, 53]. A leadingconcept is to separatemacro- and microstructure in con-
tinua andto formulatethe conservationlawsfor both structures separately (see, for ex-
ample[21, 37]). However, amoresophisticated way is to introducethemicrostructural
quantities into one set of conservation laws [31, 35]. It seems that such an approach
is extremely useful for two reasons: (i) it reflects clearly the mechanical structureof a
solid; (ii ) it allows further generalisation in order to include internal variablesandcast
more light on the thermodynamical character of wave motion.

2.2. Balancelaws

The local balancelaws in the so-called Piola–Kirchhoff f ormulationare [31] for mass,
linear momentum, andenergy, respectively:

(1)
∂ρ0

∂t

∣∣∣∣
x
= 0,

(2)
∂(ρ0v)

∂t

∣∣∣∣
x
−DivRT = f0,

(3)
∂K
∂t

∣∣∣∣
x
−∇R · (T ·v−Q) = f0 ·v,

together with thesecondlaw of thermodynamics

(4)
∂S
∂t

∣∣∣∣
x
+∇R ·S≥ 0, S=

Q
θ
+K .
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Here ρ0 is the massdensity in the reference configuration, v is the physical ve-
locity, x is theposition of amaterial point X in thereference configuration, x = χ(X, t).
T is the first Piola–Kirchhoff stresstensor, f0 is the bodyforceper unit referencevol-
ume, K = K +E, K is the kinetic energy, E is the internal energy per unit reference
volume. Q is thematerial heat flux, S is the entropy density per unit referencevolume,
S is the extropy flux, θ is the absolute temperature, and K is the extra entropy flux
(which vanishes in most cases). The balanceof momentum (2) is the most important
governingequationfor wavemotion. It ispossibleto reformulate eq. (2) so that therole
of material forces exerted onmaterial inhomogeneities is explicity seen. For that the
equation of balancemust be written onthe material manifoldM 3 of points X consti-
tutingthebody. This isdoneby Maugin [31, 35] and herewefollow his ideas(see also
[2]). Leaving aside the technical details, the canonical (material) momentum equation
reads

(5)
∂P
∂t

∣∣∣∣
x
−DivRb = f int + f ext + f inh,

where the material momentum P, the material Eshelby stressb, the material inhomo-
geneity forcef inh, thematerial external (body) forcef ext , andthematerial internal force
f int aredefined by

(6) P :=−ρ0v · f ,

(7) b =−
(
L IR+T · f

)
,

(8) f inh :=
∂L

∂X

∣∣∣∣
expl

≡
∂L

∂X

∣∣∣∣
f ixed f ields

=

(
1
2

v2
)

∇Rρ0−
∂W
∂X

∣∣∣∣
expl

,

(9) f ext :=−f0 · f ,

(10) f int := T :
(
∇Rf
)T

−∇RW

∣∣∣∣
impl

.

Here f = ∂χ/∂X

∣∣∣∣
t
= ∇Rχ, L = K −W, W = W(f , . . . ,X,z) and the subscripts expl

and impl mean, respectively, the material gradient keeping the fields fixed and taking
the material gradient only throughthefieldspresent in the function.

The energy conservationis governed by

(11)
∂(Sθ)

∂t

∣∣∣∣
X
+∇R ·Q = hint , hint := T : Ḟ−

∂W
∂t

∣∣∣∣
X
,

and thesecondlaw by

(12) Sθ̇+S·∇Rθ ≤ hint +∇R · (θK).
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2.3. Internal var iables

Althoughthepresentation of thebalancelaw in form (5) includes the forcescaused by
inhomogeneities, i.e. by the constituents, their character needs more explanation. One
step forward isto separatevariablesinto observable andinternal variables[30, 32]. The
observablevariablesaretheusual field quantitieslike elastic strain or displacement that
are observable in the real sense of the word. Internal variables however are supposed
to describe the internal structure of the solid (or body, in general) and are not observ-
able. This means that internal variables should compensate for our lack of a precise
description of a microstructure. There are several examples [32] which demonstrate
how liquid crystals, damage or dislocation movements can be described easily using
the concept of internal variables. Recently the concept of internal variables has also
been used for describing the dynamics of microstructured continua [4, 55]. Here we
follow these ideaswith K = 0.

We consider asingle internal variablesof stateααα asasecond order tensor. Then
the free energy per unit volumeW is specified as the general sufficiently regular (dif-
ferentiable) function

(13) W =W
(
f ,θ,ααα,∇Rααα

)
.

Then the equationsof state aregiven by

(14) T =
∂W
∂f

, S=−
∂W
∂θ

, A :=−
∂W
∂ααα

, A :=−
∂W

∂∇Rααα
.

From (10) and (14) we obtain now

(15) f int = f th+ f intr ,

(16) f th = S∇Rθ, f intr = A :
(
∇Rααα

)T
+A

... ∇R

(
∇Rααα

)T
.

From (11) and (14) it follows that

(17) hint = hth+hintr ,

(18) hth = Sθ̇, hintr = A : α̇+A
...
(
∇Rα̇

)T
.

Now the governingequations(5), (11) read

(19)
∂P
∂t

−DivRb̃ = f th+ f̃ intr ,

(20)
∂(Sθ)

∂t
+∇RQ̃ = hth+ h̃intr .
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Herewehave

(21) b̃ =−
(
L IR+T · f −A :

(
∇Rααα

)T
)
.

(22) f̃ intr := Ã :
(
∇Rααα

)T
, Ã = A −DivRA .

(23) Q̃ = Q−A : α̇αα,

(24) h̃int := Ã : α̇αα.

Thesimplest choiceto satisfy thedissipation inequality in an isothermal case is

(25) α̇αα = kÃ , k≥ 0.

This isactually a reaction-diffusiontype equation

(26) α̇αα = k
(
A −DivRA

)

which can be foundin numerous applications. This straightforward approach can be
generalized by introducing the dual internal variables ααα and βββ, each of which is a
second-order tensor [55]. The ideaof dual internal variableswasoriginally introduced
to explain the links between internal variables and internal degrees of freedom. It is
shown later [4] that such a generalization permitsone to better interpret the behaviour
of microstructured continua.

Thefree energy should now be taken in the form

(27) W =W
(
f ,θ,ααα,∇Rααα,βββ,∇Rβββ

)
.

In addition to equationsof state (14) wehave

(28) B :=−
∂W
∂βββ

, B :=−
∂W

∂∇Rβββ
.

The canonical equation of momentum keeps its form (19) but now [5]

(29) b̃ =−
(
L IR+T · f −A :

(
∇Rααα

)T
−B :

(
∇Rβββ

)T
)
,

(30) f̃ intr := Ã : ∇Rααα+B : ∇Rβββ,

(31) B̃ = B−DivRB .
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In order to satisfy the dissipation inequality, the simplest form of evolution equations
for ααα andβββ is

(
α̇αα
β̇ββ

)
= L

(
Ã

B̃

)
=

(
L11 L12

L21 L22

)(
Ã

B̃

)
,(32)

where the components of the linear operator L are dependent on state variables [24].
It is possible to decomposeL into the sum of symmetric and skew-symmetric compo-
nents. Based again on dissipation inequality [5], we get

(
α̇αα
β̇ββ

)
=

(
L11 0
0 L22

)(
Ã

B̃

)
+

(
0 L12

−L12 0

)(
Ã

B̃

)
.(33)

In the case of non-dissipative processes the fully coupled evolution equations
aresimply

(34) α̇αα = L12 B̃ , β̇ββ =−L12 Ã .

In this case, the evolution of one internal variable is driven by another one that
expresses the duality between the internal variables. In the usual context of internal
variables the resultingevolutionequation isof the reaction-diffusiontype(cf. eq. (26))
which demonstrates that the internal variable is not inertial. In case of dual internal
variablesit isalso possibleto account for inertial effects. For example, let B = 0. Then
the free energy functionW (see(27)) is independent of ∇Rβββ and relations (34) reduce
to

(35) α̇αα = L12 B, β̇ββ =−L12 Ã .

Let usassumefurther aquadratic dependenceof the free energy with respect to
βββ. Then B =−βββ and instead of (35) we have

(36) α̇αα =−L12 βββ, β̇ββ =−L12 Ã .

This system can bewritten asone equation

(37) α̈αα =
(
L12 ·L12) · Ã ,

which is a hyperbolic evolutionequation for the internal variableααα. In physical terms
it means that the inertiaof the internal variable is taken into account (cf. eq. (26)).

2.4. Micromorphic elasticity

Mindlin [37] hasformulatedanelegant theory for describingthemicrostructuredsolids.
In hispresentationthemicrostructureis“ interpretedasamoleculeof apolymer, a crys-
tallit e of a polycrystal or a grain of a granular material” . We know now several modi-
ficationsof the continuum theory (seefor example, [8, 22]) but theMindlin micromor-
phic theory is extremely well suited for describing the wave processes in microstruc-
tured solids because its clear physical reasoning. Herewe follow hispresentation [37]
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and then show that his model of a microstructure can be easily formulated in terms of
internal variables.

The displacement u of a material particle in terms of macrostructure is defined
by itscomponentsui ≡ xi −Xi, i = 1,2,3, wherexi ,Xi arethe componentsof thespatial
andmaterial position vectorsx,X, respectively. Within each material volume(particle)
there is a microvolume and the microdisplacement u′ is defined by its components
u′i ≡ x′i −X′

i where the origin of the coordinates x′i moves with the displacement u′.
The basic assumption of Mindlin is that the microdisplacement can be expressed as a
sum of products of specified functions of x′i and arbitrary functions of xi and t. Then
the first approximation of this assumption is u′i = x′kψkj(xi , t) and consequently the
microdeformationis

(38)
∂u′j
∂x′i

= ψi j (xi , t),

and the relativedeformationtensor is γi j ≡ ∂ jui −ψi j .

A microdeformation gradient is then

(39) κi j k ≡ ∂iψik.

From the variational equation of motion, we obtain the following governing
equations(no bodyforce):

(40) ρoü j = ∂i(σi j + τi j ),

(41)
1
3

ρ′d2
ji ψ̈ik = ∂i(µi j k+ τ jk).

Hereσi j is theCauchy stress, τi j therelativestressandµi j thedoublestress; in addition
ρ′d2

ji isamicroinertiatensor whereρ′ is thedensity of themicrostructure. Thebalance
laws (40) and (41) for macro- and microlevel are introduced independently. The next
step will be to introducethe free energy density W and then determine

(42) σi j ≡
∂W
∂εi j

, τi j =
∂W
∂γi j

, µi j k =
∂W

∂κi j k
.

Now we apply the internal variable theory described in Section 2.3. We need to repre-
sent the constitutive relations in terms of distortion ∂ jui and microdeformation tensor
ψ ji . Then thestresses are

(43) σ′
i j ≡

∂W′

∂(∂iu j)
, τ′i j =

∂W′

∂ψi j
,

where W′ is rearranged in terms of ∂ jui and ψi j . The double stressµi j k remains un-
changed. Then eqs. (40), (41) can berewritten as

(44) ρoü j = ∂iσ′
i j ,
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(45)
1
3

ρ′d2
i j ψ̈ik = ∂iµi j k− τ′jk.

We consider now themicrodeformationstensor ψi j asan internal variableα andapply
the formalism shown in Section 2.3. Obviously the microdeformation gradient κi j k

plays theroleof thegradient of the internal variableααα andconsequently (this isanon-
dissipative case) it must be adual internal variable βββ. Then, following (37) we may
write

(46) α̈αα =
(
L12 ·L12) · Ã =

(
L12 ·L12) ·

(
−

∂W
∂ααα

+Div
∂W

∂(∇ααα)

)
.

In termsof ψi j , eq. (46) yields

(47)
(
L12 ·L12)−1

ji ψ̈ik =

(
−

∂W
∂ψ jk

+Div
∂W

∂(∇ψ jk)

)
= ∂iµi j k− τ′jk.

This equation coincides with (45) which is derived directly from the Mindlin
theory. However, there is an important difference — this equation of motion is not
derived from the balanceof momentum but it follows from the dissipation inequality
(seeSection 2.3 andexpressionsfor hintr ) for the chosen functional dependenceof free
energy in the considered nondissipative case.

2.5. One-dimensional case

This is the simplest case but demonstrates clearly the physical effects, especially the
scale-dependence. First we follow directly the ideasof the Mindlin theory [17, 19]. In
the 1D case we drop the indices i, j,k and deal with u and ψ only, the indices t and x
denote here differentiation. The balance laws were derived by Mindlin [37] from the
Hamilton (variational) principle, herewe use Euler–Lagrange equations in term of the
Lagrangian L = K −W and u,ψ. The kinetic energy K and the freepotential energy
W are now

(48) K =
1
2

ρu2
t +

1
2

Iψ2
t , W = W(ux, ψ, ψx),

where I ismicroinertia.

TheEuler–Lagrange equationshave thegeneral form

(49)

(
∂L

∂ut

)

t
+

(
∂L

∂ux

)

x
−

∂L

∂u
= 0,

(50)

(
∂L

∂ψt

)

t
+

(
∂L

∂ψx

)

x
−

∂L

∂ψ
= 0.

Note that we neglect here the double stressµi j k but we have two balancelaws.
Let now the potential energy W be aquadratic function, i.e. we look for a linear case:

(51) W =
1
2

au2
x +Aψux+

1
2

Bψ2+
1
2

Cψ2
x,
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where a,A,B,C are coefficients, usually a= λ+2µ with λ,µ being the Lamé parame-
ters. Leavingaside the technical details (see[17]) we arrive to thesystem of equations
of motion

(52) ρ0utt = auxx+Aψx,

(53) Iψtt =Cψxx−Aux−Bψ.

This is actually a system of two balance laws that must be solved with proper initial
and boundary conditions.

Now we use the concept of dual internal variables. The potential W depends
now onux and onthe internal variablesα,β and their derivatives

(54) W =W(ux,α,αx,β,βx) ,

whereα and β arescalar quantities. We set

(55) σ :=
∂W
∂ux

, τ :=−
∂W
∂α

, η :=−
∂W
∂αx

, ξ :=−
∂W
∂β

, ζ :=−
∂W
∂βx

.

Only onebalance equationisneededfor themacrostructurewhich in its simplest
form is

(56) ρ0utt = σx.

Followingeqs. (34) for internal variablesand calculating Ã and B̃ , in terms of
(55) we obtain

(57) α̇ = l12(ξ− ζx) , β̇ =−l12(τ−ηx) .

Followingeq. (51) we assume again that thepotential isa quadratic function

(58) W =
1
2

au2
x+Aαux+

1
2

Bα2+
1
2

Cα2
x +

1
2

Dβ2,

where all the coefficients a,A,B,C,D are constants. After calculating the constitutive
quantities (55) from (58), we obtain

(59) σ = aux+Aα, η =−Cαx , ζ = 0,

(60) τ =−Aux−Bα , ξ = Dβ.

Then wehave α̇ = l12Dβ andfrom the evolutionequation for β (572) it followsthat

(61) α̈ =−l212D(τ−ηX) .

Asaresult, from (56) and (61) we arrive at the equationsof motion

(62) ρ0utt = auxx+Aαx

(63) Iαtt =Cαxx−Aux−Bα,

where I = 1/
(
l212D

)
is themicroinertia. It iseasily seen that thesystems(52), (53) and

(62), (63) are identical provided we takeψ as the internal variableα.



Complexity in mechanics 303

2.6. Hierarchy of waves

Waves in microstructured continuum exhibit the hierarchical behaviour in thesense of
Whitham [58]. It means that a scale parameter δ plays an important role. Depending
on its limit values, δ → ∞ or δ → 0, one or another wave operator governs the pro-
cessasymptotically. In our case the hierarchical behaviour isgoverned by a parameter
which is the ratio of the characteristic scale of a microstructure and the wavelength of
the excitation.

Thereisnosuch ascaleparameter in thegoverningequations(52), (53) or (62),
(63). First we note that the system of two second-order equations can be represented
also in the form of one fourth-order equation. In terms of the macrodisplacement u it
reads:

(64) utt =
(
c2

0− c2
A

)
uxx− p2(utt − c2

0 uxx
)

tt + p2 c2
1

(
utt − c2

0 uxx
)

xx,

where c2
0 = a/ρ0 = (λ+2µ)/ρ0, c2

1 = C/I , c2
A = A2 = A2/ρ0B, and p2 = I/B is an

inherent time constant. It is obvious that this model involves several wave operators.
Let usnow introducedimensionlessvariablesand parameters. First, let thescaleof the
microstructurebe l andthe excitationcharacterised byitsamplitudeU0 andwavelength
L. Then we can introduce

(65) U = u/U0, X = x/L, T = c0t/L, δ1 = l21/L2, ε =U0/L.

We also suppose that I = ρ0l2I∗,C = l2C∗ where I∗ is dimensionlessand C∗

has the dimension of stress. Note that I is scaled against ρ0, so that any differenceof
densities isembedded in I∗. By an asymptotic analysis [19] after introducing(65) into
(52), (53) we get finally

(66) UTT =

(
1−

c2
A

c2
0

)
UXX+

c2
A

c2
B

(
UTT −

c2
1

c2
0

UXX

)

XX

,

where c2
B = B L2/I . Note that c2

B involves the scales L and l and c2
A includes the in-

teraction effects between the macro- and microstructure throughthe parameter A. It
means that

(67)
c2

A

c2
B

= δI∗
A2

B2 .

Equation (66) reflects explicitly the hierarchical nature of wave propagation in
microstructured solids: if c2

A/c2
B is small then waves are governed by the propertiesof

macrostructure; if however, c2
A/c2

B is large, then waves “ feel” more microstructure. In
absence of the interaction between macro- and microstructure (i.e. when A = 0), the
wave operator in termsof U is simply UTT −UXX.

For comparison with (64), the dimensions may be restored in eq. (66). It then
reads:

(68) utt =
(
c2

0− c2
A

)
uxx− p2c2

A

(
utt − c2

1 uxx
)

xx.
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It is obvious that the approximated model (68) neglects utttt completely while
the influenceof uttxx is different in (64) and (68). The dispersionanalysis [41] permits
to establish the rangesof applicabilit y of the derived asymptotic model (66).

It is possible to develop such a hierarchical modelli ng further by introducing
multiple scales. The need is obvious from the general analysis of physical structures
of solids [23]. Following the Mindlin model it means in physical terms that every
deformable cell of themicrostructureincludesnew deformable cellsat asmaller scale.
So material is supposedto be composed bythemacrostructureincludingmicrostructure
at a certain scale that includes microstructure at some smaller scale. Then instead of
system (52), (53) weobtain a system of threebalancelaws [19]

(69) ρ0utt = auxx+A1ψx,

(70) I1 ψtt =C1ψxx−A1ux−B1ψ+A2ϕx,

(71) I2 ϕtt =C2ϕxx−A2ψx−B2ϕ,

where Ii ,Ai ,Bi ,Ci , i = 1,2 are material parameters like previously denoting the param-
eters for microstructures1 and 2, respectively. Oneneedshere two scale parameters l1
and l2 against the excitation wavelength L. Using the similar asymptotic analysis like
above, the two-scalehierarchical equation takes the form [19]:

utt =
(
c2

0− c2
A1

)
uxx+ p2

1c2
A1

[
utt −

(
c2

1− c2
A2

)
uxx
]
xx

−p2
1c2

A1 p2
2c2

A2

(
utt − c2

2 uxx
)

xxxx,(72)

wherec2
1 =C1/I1, c2

A1 =A2
1/ρ0B1, c2

2 =C2
2/I2, c2

A2 =A2
2/I1B2, and p2

1 = I1/B1, p2
2 =

I2/B2. Parametersci ,cAi arevelocitieswhile pi are time constants. Thisequationmust
be compared to eq. (64). It isobviousthat theresult isastep closer to crystal structures
of materials [34] and includesmoredispersive effects for smaller wavelengths.

2.7. Nonlinear ities

In very general terms nonlinearity means an imprint of nature forbidding additivity
in many aspects. In this sense, linear models are just a first approximation where
the assumption of proportionality dominates. As said before (see the Introduction),
nonlinearity is a cornerstone of complexity. Indeed, if the interaction of constituents
or partsof a complex system is nonadditive, then the behaviour of a whole is different
from asimple sum. There aremany sourcesof nonlinearities influencingwavemotion
in continua[14]:

– material (physical) nonlinearities, i.e. constitutive law(s) is/are nonlinear; in terms
of stress-strain relationsit meansthat thepotential energyW hastermsof higher
order than quadratic;

– geometrical nonlinearities; i.e. deformation(cf. strain tensor in its full form);
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– kinematical nonlinearities, i.e. convectivity, compoundmotion, etc.;

–structural nonlinearities; for example, dueto constraintslimitingthemotion of struc-
tural elements;

– combined nonlinearities; i.e. coupling of fields.

Why are nonlinearities important in modelli ng the wave motion? Nonlinear models
(see[6, 12, 14, 28, 34, 58]) are able to describe distortion of wave profiles (spectral
changes), amplitude-dependent velocities, interaction of waves, spatio-temporal chaos,
and other important physical effects, goingalso beyondthe elastic limit.

But nonlinearities are not the only sources of complexity, often there are other
effects influencing (in this context) wave motion. This is also the case of waves in
solids. The other effects could be dispersion, dissipation, forcing, couplingwith other
fields, etc. Especially interesting are cases in which nonlinearity is balanced by other
effects. So solitons and solitonic structures may emerge if nonlinearity/ies and dis-
persive effects are balanced, shock waves and dissipative structures may emerge if
dissipation and nonlinearity are balanced, and forcing in nonlinear systems may lead
to chaotic regimes.

This paper is focused on microstructured solids. The models described above
have introduced dispersive effects to macromotion due to microstructure. If we intro-
duce now physical nonlinearities into the models then the results are following [17].
First, thepotential energyW is assumed in the form (cf. eq. (51)).

(73) W =
1
2

au2
x + Aψux+

1
2

Bψ2+
1
2

Cψ2
x +

1
6

Nu3
x +

1
6

Mψ3
x,

whereM andN denote theparametersof nonlinearitiesfor macro- andmicrostructure,
respectively. This is the first step of generalisation while it is possible to assume also
more cubic terms. However, this approximation reveals interesting effects into the
analysis.

Followingthe ideasof Section 2.5, we get thegoverningsystem of equations

(74) ρ0utt = αuxx+Nuxuxx+Aψx,

(75) I ψtt =Cψxx+Mψxψxx−Aux−Bψ.

Again we introducethe dimensionlessvariables (65) and scaling as in Section
2.6, assuming in addition, M = M∗l3. Then we obtain the hierarchical equation (cf.
eq. (66)):

UTT =

(
1−

c2
A

c2
0

)
UXX+

1
2

k1
(
U2

X

)
X

+
c2

A

c2
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(
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c2
1

c2
0

UXX

)

XX

+
1
2
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(
U2

XX

)
XX ,(76)
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where k1 = Nε/a = Nε/(λ+ 2µ) and k2 = δ3/2
(
A3M∗ε

)
/
(
aB3

)
are the parameters

expressing the strengths of physical nonlinearities on macro- and microscale, respec-
tively. The leading wave operators in the equations of motion (66) or (76) are of the
second order and describe in the 1D setting both left- and right-travelli ngwaves. The
higher order terms in this non-dissipative case are responsible for dispersion. In many
fieldsof physics, thenotion of evolutionequationsis introduced which govern just one
wave. Physically it means the separation (if possible) of a multi -wave situation into
separate waves along properly chosen characteristics. This approach needs stretched
coordinates, for example

(77) ξ = cit −X, τ = εX,

whereci is the velocity from the main operator and ε is a small parameter. For details,
see[12], [51], etc. The resulting evolution equation in terms of ∂U/∂X ≡ v consists
usually just thewaveoperator ∂v/∂τ.

Historically, however, the celebrated Korteweg–deVries (KdV) equation de-
rived for describingwaves in shallow water must benoted. It reads

(78) uτ +muuξ+duξξξ = 0,

where m is a nonlinear parameter and d is a dispersion parameter. As shown by
Zabusky and Kruskal [59], this nonlinear equation has solutions in a form of a sta-
ble solitary wave, called soliton. The KdV equation and solitons have paradigmatic
value, such stablesolutionshavebeen discovered in many neighbouringfields: in fluid
dynamics, in plasmadynamics, andalso in dynamicsof solids.

From eq. (76) it ispossible to derivethe followingevolutionequation [41]:

(79) vτ +q(v2)ξ +dvξξξ + r(v2
ξ)ξξ = 0,

where

(80) q=
N

4ρc2 , d =
c2− c2

1

2c2 , r = ε
c2

M

4c2 , c2 =
1
ρ

(
a−

A2

B

)
.

If A = 0 (no microstructure exists), then eq. (79) yields a KdV equation. In
eq. (79), however, themacro- andmicro-nonlinearitiesboth areof importance.

A standardized (normalized) KdV equation hasan elegant form

(81) wτ +6wwξ +wξξξ = 0,

which isobtained from eq. (78) by settingu= w/mandξ → d1/3ξ, w→ 6z1/3w, τ→ τ.
In these termseq. (79) reads [44]

(82) wτ +6wwξ +wξξξ +3
r

qd
(w2

ξ)ξξ = 0.

The last coefficient on the left of (82) shows that in a normalized form micro-
nonlinearity isweighted in relation to themacro-nonlinearity and dispersion.
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3. Complexity

3.1. General ideas

Complexity science was briefly described in the Introduction. Here, after analysing
the basic modelsof microstructured solidswith notionsof interactingconstituents, in-
ternal variables, hierarchy of waves and nonlinearity, we return to basic principles of
complexity. Taylor [52] has identified the following characteristics of complex sys-
tems: complex systems are comprised of many different parts, which are connected
in multiple ways; complex systems produceglobal emergent structures, generated by
local interactions; emergenceoccurs far from equili brium; complex systems are typi-
cally nonlinear. But complexity doesnot mean chaos in its physical sense, emergence
usually occurs at the edge of chaos [26, 52]. If something is at an edge, then cer-
tainly both sides must be carefully studied — in context it means that both order and
chaos [42] must be properly analysed. Mechanics is full of examples of chaotic mo-
tion, starting from the three-bodysystem and nonlinear pendulums to the celebrated
Lorenz attractor describing convection in the atmosphere [38]. Prigogine [42] said:
“One widely-studied example was the three-bodysystem, perhaps the most important
problem in thehistory of dynamics” .

Another important issue in complex systems is their multiscale structure. The
system behavesdifferently ona macroscopic level than onthe microscopic level. That
leads to certain hierarchieswhich are linked physically andshould also bereflected by
proper mathematical models. Modern developmentsin complexity studiesare coupled
with nonlinearitiesand scaling. Certain universal argumentshelp us to make progress
within a wide range of problems not only in solids, fluids and soft matter but also in
biology, chemistry andsocial sciences.

In Section 2a brief description of generalized continuawas presented which is
extremely important for contemporary advanced technology, including materials sci-
ence and highintensity or highfrequency dynamicprocessesin solids. Althoughfluids
werenot touched, many processes, especially nonlinear wavesin fluidsaregoverned by
similar models. But turbulence, vortex dynamics, and so forth, form special chapters
in fluid dynamicsandwithout any doubt represent excellent examplesof complexity.

Let usnow collect the essential features from theoriespresented briefly in Sec-
tion 2. Hierarchy is clearly evident from the model equations (66), (68), (72). This is
the manifestation of multiscale structures of the matter [23]. The internal structure in
this context is modelled by internal variables which are connected to thermodynamic
conditions. The second law of thermodynamics [42] is therefore one of the govern-
ing equations in modelli ng of waves in microstructured solids. We have also shown
that physical nonlinearities can easily be taken into account resulting in a nonlinear
hierarchical equation like eq. (76).

The hierarchical models describe dispersive effects dependent on scale factor.
The dispersive and nonlinear effects together may lead to the emergence of solitary
waves. Thisdemonstratestheuniversality of main ideasof complexity becausesolitary
wavesmay emergein fluidsand in solids.
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Figure 1. Soliton trainsemerge from pulse-type initial conditions according to (76) [20]

Figure2. The emergenceof solitons shown in the space-time plane, according to (76) [20]
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Besides structural hierarchies as described above, functional hierarchies may
also be of importance. This is evident, for example, in biophysics where processes at
various levelsof scale can influence each other (more in Section 3.3).

3.2. Examples from mechanics

Oneof the celebrated nonlinear phenomenais the emergenceof solitons. This ispossi-
blewhen nonlinear effectsarebalanced by dispersive effects. It all startedwith theKdV
equation [59] but eq. (76), which describes waves in microstructured solids, displays
a similar phenomenon. Contrary to the evolution equations, this is a two-wave equa-
tion. The emergenceof solitons actually means the emergenceof strain (a sequence)
of solitons which all propagatewith different velocities. The processof emergenceof
two soliton trains from a single pulse-type initial condition is shown in Fig. 1 [20] for
discrete time moments. Fig. 2 demonstrates the similar processin the space-time plot.
The resultsareobtained by using thepseudospectral method.

In the classical KdV case (eq. (78)), the emergence follows a similar pattern
resulting in one train of solitons. Zabusky and Kruskal [59] studied the emergence
of solitons from a harmonic initial conditions. They identified an emerging soliton
train with a certain number of solitons and the processof recurrence— after several
interactions of emergent solitons, the initial situation is restored. Their calculations
were carried out until thefirst recurrencetimeτR. The calculationsupto 100. . .200τR

haverevealedaremarkableregular pattern of trajectoriesof singlesolitonsin thespace-
timeplane[18]. Thesepatternsareshown in Fig. 3 while in timeunits shown there the
recurrencetimeτR=∼30. Thestriking periodicity iseasily seen fromtherhombus-like
patterns (here m= 1, dl = 2,3209, dl = − logd), initial condition u(ξ,0) = −sinξ,
boundary conditionsareperiodic.

Periodicity is usually related to certain periodic initial conditionsor to periodic
external forces. In this case some resonancemay occur. Here we present results when
the processismodelled bya standard KdV equationwith a right-handside term:

(83) ut +muux+duxxx= f (u),

where we take f (u) = α1 sinβ1u with α1β1 being constants [18]. Here x and t are the
movingcoordinates like (77). Thedependenceon forcing parameters is observed. For
example, the wave profiles in space-time plane for moderate and strong forcing are
shown in Fig. 4 andFig. 5, respectively (m= 1). The amplitudesof emergingsolitons
are amplified and instead of a train of solitonswith different amplitudes, some special
soliton groupswill emerge. Clear periodicity of pattern of trajectories is seen.
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Figure 3. Rhombus-like pattern of trajectories in the space-time plane, model is (78):
(a) τ = (0. . .1000), (b) τ = (4000. . .5000) [18]
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Figure 4. Solitonic structures with forcing, eq. (83). Moderate field (dl = 2.2,α = 3,β = 1);
time-sliceplots for: (a) 0≤ t ≤ 8, (b) 45≤ t ≤ 50, (c) single profile at t = 46,9 [18]
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Figure5. Solitonic structures with forcing, (94). Strongfield (dl = 1.4,α = 50,β = 0.25):
(a) time-sliceplots, (b) single profile at t = 47,0 [18]

The example above are all governed by quadratic nonlinearity and cubic dis-
persion which is characteristic to classical KdV equation. For martensitic alloys, for
example, the situation can be different [27]. Then the dispersion is quadratic-quartic
and dispersioncubic-quintic. Thegoverningevolutionequation is then

(84) ut +[P(u)]x+du3x+bu5x = 0,

(85) P(u) =−
1
2

u2+
1
4

u4,

whered andb are constants. Thismodel leads to many typesof solitary waves includ-
ing one interestingcase of “plaited ” solitons. Such a stable soliton structure is shown
in Fig. 6, generated bya single initial pulse.
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The waves in hyperelastic rods are governed by even a more complicated evo-
lution equation. For example, in a Mooney–Rivlin rod the evolution equation takes a
form [10]

(86) ut +σ1uux+σ2uxxt +σ3 (2uxuxx+uuxxx) = 0,

where σ1,σ2,σ3 are constants. Again, beside other solitonic structures, a special
“plaited” -typesolitonic structuremay emerge, as shown in Fig. 7.

Asalready stated, theKdV equationwasoriginally derived for wavesin shallow
water. The KdV soliton is constant in the direction transversal to propagation. A
solitonalonga channel of finitewidth isclearly modelled by theKdV equation. On an
infiniteplane, thesolitonsmay propagatein any directionandtheinteraction processof
solitonspropagatingin different directionsneedsmore accuratemodelli ng. In thiscase
the influenceof transversal directionmust betaken into account. In thiscase instead of
astandard KdV equation, theKadomtsev–Petviashvili (KP) equation isused [46]. The
standard KP equation in normalized variables(x,y, t,u) reads [47]

(87) (ut +6uux+uxxx)x+3uyy= 0,

where u has the meaning of elevation of the water surface. The 1D KdV operator is
easily recognized between the parentheses of eq. (87). A remarkable nonlinear effect
occurs in the interaction processof two solitons modelled by eq. (87) [48, 49]. The
interaction processmay result in a particularly high and steep wave hump. For exam-
ple, interactionsof equal amplitudesolitonsmay lead to water surface elevationsup to
four times ashigh as the amplitudeof the counterpartsand the slope of the wave front
may encounter eightfold increase. This is a very clear manifestation of the character
of nonlinear processes — the whole is more than the sum of its parts! This process
is ill ustrated in Fig. 8 [49] for four cases with different angles of propagation. The
interactionsoliton (hump) is clearly detected, for details see[49]. Fig. 9 shows a pho-
tograph from a real situation. Actually it can be said that the soliton interaction may
serve asa possiblemechanism for freak waves.

3.3. Examples from biophysics

Mathematical modelli ng of biological processes and biomechanics means describing
the physiological phenomena and structural behaviour of living tissues, organs, cells,
neuronal networks, etc. There are many specific features which must be taken into
account [56]:

– biological systemsneed energyexchangewith thesurroundingenvironment andrep-
resent thesystems far from thermodynamic equili brium;

– the processes operate over different time scales, are spatially extended, and include
many hierarchies;

– in physical terms, one should account for nonlinearities, dissipation, activity/excit-
abilit y, spatiotemporal coupling, etc.
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Figure 6. Plaited solitons according to (84) and (85), dl = 1.6, bl = 2.0 [27]

 

Figure 7. Solitonic structure for (86), time-sliceplot [54]
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Figure 8. Interaction of two solitons according to (87), panels differ by the interactionangle.
The highest interaction soliton is shown in the lower right panel [49]

Figure 9. A real interactionsoliton in the Baltic Sea, near Saaremaaisland, Estonia
(photograph courtesy of T. Soomere)
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These features are characteristic of complex systems, and biophysics is nowa-
days clearly a part of complexity science under the chapter “systems biology” [29].
The existenceof scales and, consequently, hierarchies must however be explained in
more detail [56]. Namely, in biological tissues one should distinguish two possible
types of hierarchies: (i) a structural hierarchy, involving strong dependenceon length
scales, and (ii ) a functional hierarchy meaning that at various levels of scale, vari-
ous dynamical processes are of importance, all of which influence the behaviour on
the macroscale. Structural hierarchiesactually reflect the enormously rich architecture
of biological tissues. The fundamental structural hierarchy is atom → molecule →

cell → tissue → organ → human. But tissues have themselves a complicated struc-
ture which should be taken into account when the stresses and strains in tissues are
calculated. In this sense, living tissues resemble microstructured materials. For ex-
ample, for the heart contraction the structural elements are: sarcomeres→ myofibrils
→ fibres → myocardium → heart. Functional hierarchies reflect the complexity of
functioning biosystems. The same example of the heart contraction has the follow-
ing functional hierarchy: oxygen consumption→ energy transfer → Ca2+signals→
cross-bridgemotion→ contraction.

The concept of internal variables, explained and used abovefor microstructured
materials, can effectively begeneralized for description of hierarchiesin livingtissues.
Structural hierarchy can easily be described by the theory presented in Section 2.3,
functional hierarchy needsageneralization[15]. Let theobservablevariablebedenoted
by χ andtheinternal variableby α. The evolutionlaw for α isabovegiven by(26), but
herewe follow a simplified presentation[16, 56].

We introduce the hierarchy of internal variables α,β,γ, . . .. The constitutive
equation for a dependent variable (stress, for example) σ depends on the observable
variableχ andthe first-level internal variableα

(88) σ = σ(χ,α) .

The evolution law for α is (cf. (26))

(89) α̇ = f1 (χ,α,β) ,

whereβ is thenext, second-level internal variableinfluencingσ only through dynamics
of α. The evolution law for β is

(90) β̇ = f2 (χ,α,β,γ, . . .) ,

where γ is the third-level internal variable. The evolution law for γ is

(91) γ̇ = f3 (χ,α,β,γ, . . .) ,

etc.

Such an approach isused modelli ngthe cardiac contraction[15, 16]. Thestress
in myocardium can besplit i nto activeσσσa and passiveσσσp stresses. Thepassivestressis
calculated fromthe elasticdeformation of thetissue, i.e. thefree energymust beknown.
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Active stressσσσa needs more sophisticated approach. It is generated in myofibrils by
activationand isdirected parallel to fibres

(92) σσσa = σaεεε1εεε1,

where εεε1 is the unit vector showing orientation. At the structural level, myofibrils are
the starting point. A myofibril i s composed of repeating units of myosin and actin
filaments, called sarcomeres. The actin filaments is made of a double helix of actin
moleculeswith troponin molecules localized in certain intervals. Themyosin filament
consistsof myosin proteinswith certain spatially localizedmeromyosinmoleculeswith
headsresembling“golf-clubs” . Theseheadsare called cross-bridges. The excitation of
amuscle is triggered byan action potential from the conductingsystem. Thispotential
in itsturn releasedCa2+ionsin thesarcotubular system which then activatethetroponin
molecules so that they will be able to attach the heads of myosin molecules. This
attachingmeans swivelli ng of myosinmoleculesthat causeslidingthe actinandmyosin
filamentsagainst each other. Asa result, activestressiscreated.

We start from the macrolevel down. The force on actin molecules (along the
actin filament) depends on the distance z between an attached cross-bridge and the
nearest actin site. There are two states throughthe cycle, producing force. Denoting
them by A andB, we may calculate the correspondingforcesby

(93) FA = KA z, FB = KB z,

whereKA,KB are elastic constants. Further we takeKA = KB = K. The total forceover
a sarcomere of the length ls depends on the number of cross-bridges between z and
z− dz in both states. We take the uniform distribution of cross-bridges in z over an
interval d. The activestressis then found by

(94) σa =
mls K

2d

(∫ d/2

−d/2
nA(z) dz+

∫ d/2

−d/2
nB(z) dz

)
,

where m is the number of cross-bridges per unit volume and nA(z),nB(z) are relative
amountsof cross-bridgesproducingforce(i.e. beinginstatesA andB). Thesevariables,
nA andnB are nothingelse than the first-level internal variables. They (cf. Section 2.3)
aregoverned by the followingevolutionequations

(95)
∂ nA

∂ t
+w

∂ nA

∂ z
= f1 nC+g2 nB− (g1+ f2) nA,

(96)
∂ nB

∂ t
+w

∂ nB

∂ z
= f1 nA− (g2+ f3) nB,

where w is the velocity of lengthening, f1, f2, f3,g1,g2 are kinetic constants between
the states and nC is the amount of cross-bridges that does not produceforce. Clearly
the summation of all activated cross-bridgesgives

(97) A= nA+nB+nC.
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Now, A is the next, i.e. the second-level internal variable, the changesof which affects
the variableσa only over nA,nB. The internal variableA (the activation parameter) has
its own evolutionequation

(98)
d A
d t

= c1 (ls) [Ca2+] (1−A)− c2 (ls) A,

with c1(ls),c2(ls) as certain parameters. Equation(98) involvesthe third-level internal
variable [Ca2+] which must begoverned by its own evolutionequation

(99)
d [Ca2+]

d t
= f

(
[Ca2+]

)
.

In practice, the last equation is usually replaced by the approximation of experimental
curves.

So, in thiscasethevariableσa is influenced by threelevelsof internal variables
that form ahierarchy.

The calculationsof contractionareperformed by usingthismodel andFEM for
the idealized spheroidal left ventricle [15, 56].

Another important problem in biophysics is the pulse transmission in nerve fi-
bres. A nerve pulse is actually an action potential which is transmitted down the axo-
plasm core of a nerve fibre. The processis accompanied by the ion currents through
the membrane. These currents actually “ feed” the processwith energy and as a re-
sult, a stable asymmetric solitary nerve pulse propagates along the fibre. The cel-
ebrated Hodgkin–Huxley model has specified the ion currents by introducing three
phenomenological variables n, m, h [25]. Variable n governs the potassium conduc-
tance (turning on), and m,h govern the sodium conductance (turning onand off , re-
spectively). Together with parabolic (inductance neglected) telegraph equations and
expressions for ion currents, this Hodgkin–Huxley model is carved ona stone tablet.
A very useful simplification of themodel iscalled after FitzHugh–Nagumo[39] which
includesonly oneioncurrent called recovery variable. Engelbrecht [11] hasderived an
evolution equation for a nerve pulse based onfull , i.e. hyperbolic telegraph equations
andFitzHugh–Nagumo type ioncurrent (see also [13]).

The evolution equation is certainly an one-wave equation. In suitably chosen
variables it reads for the action potential z

(100) zξx+ f (z)zξ +g(z) = 0,

with f (z) = k0+k1z+k2z2 andg(z) = g0z. Herek0,k1,k2,g0 are constantsandtheroots
of f (z) = 0 arez1 > 0,z1 > 0,z1 6= z2. Theindependent variableξ = c0t−x wherec0 is
the velocity of pulse. This equation must be solved under initial excitation z(0,ξ) and
the proper boundary conditions. Equation (100) is able to describe (i) the asymptotic
solitary with an overshoot; (ii ) the all -or-none phenomenon, i.e. the existence of a
threshold; (iii ) refractoriness, i.e. a secondaction potential cannot be generated if the
second stimulus is applied too soon after the first one. As an one-wave equation, if
cannot beused for thedescription of thehead-oncolli sion of pulses. A stationary wave
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in termsof η = x+λξ,λ = const is described bya Liénard type equation

(101) z′′+ f (z)z′+λ−1g(z) = 0,

where ′ = ∂/∂η. In contrast to the celebrated van der Pol equations, the roots of f (z)
are both positive. For a more detailed analysis of (100) and (101) see[13]. The phe-
nomenological (recovery) variablesrelated to ioncurrent are actually internal variables
in termsof continua[32]; Maugin andEngelbrecht [33] haveshown how to usethefor-
malism of internal variables for theFitzHugh–Nagumo andHodgkin–Huxley models.

Figure 10. Emergenceof single nerve pulses from asingle excitation
according to (102) and (103) [57]

Compared to solitons in conservativemedia, nerve pulses also propagatewith-
out changingtheir profilebut havemoreinterestingfeatures. Thenervepulsesaresep-
arated by a refraction length, and at head-on colli sion processpulses annihilate each
other. Herewedemonstratesomesolutions to theFitzHugh–Nagumo typemodel [7]

(102) ut = u(1−u)(u−a)− v+D1uxx

(103) vt = ε(−v+bu)+D2vxx,
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where u is the action potential and v is the recovery variable — comparable to the
potassium ion current in the Hodgkin–Huxley model and to the internal variable in
continuum theory. In addition ε is the differenceof time scales of u and v, a is related
to velocity andD1,D2 are thediffusioncoefficients. HereD1 ≫ D2 and in calculations
we may takeD1 6= 0,D2 = 0.

Theprofileswere calculated by the pseudospectral method[57]. Fig. 10 shows
thegeneration of typical pulsespropagatingto right and left from the initial excitation.

Fig. 11 shows the generation of periodic pulses from repeated excitations that
should beseparated in timemorethan therefractiontime. At thehead-oncolli sion, the
pulsesannihilate each other as shown in Fig. 12.

The examplesaboveoncardiac contractionand nervepulsetransmission demon-
strate clearly that the concept of internal variables isapplicable also in biophysics.

4. Final remarks

Nonlinear wavemotion in solidsandfluidsaccompanied by dispersive effectsexhibits
manycharacteristicsof complexity: coherent structures, scale-dependence, hierarchies,
etc. The conceptselaborated in mechanicscan easily begeneralized to other fields, for
example, biophysics. The examples given above demonstrate the rich world of com-
plexity in physical and biological systems. More could be foundin longer treatises on
that topic [3, 43]. There aremany challengesfor further studies. A great challenge, for
example, is to build multiscale models relating mesoscopic physics to continuum me-
chanics reflecting the existenceof nonlinearitiesover the scales, dispersive/dissipative
effectsand thermodynamical consistency. In studiesonsurfacewaves, a breakthrough
is feasible throughsystematic investigation of nonlinear interactions of directionally
spread or crossing highly nonlinear shallow water waves, combined with studies of
the run up of various incident waves. Clearly of importance are the problems of tur-
bulent mixing where several methods can be used for establishing anomalous scaling
exponents. But nonlinearitiesalso have an essential influenceon neighbouringfieldsof
mechanics. Due to the nonlinearity of optical phenomena in anisotropic and inhomo-
geneous media, the inverse problem of photoelastic tomography used for determining
the stressfields isnonlinear and needs special methods to be developed in order to get
solutions with required accuracy. The studies on diffusion restrictions in the cardiac
muscle cells and the regulative processes of oxidative phosphorylation permit one to
estimate intracellular energy fluxes. These studies, together with proper hierarchical
modelli ng of myocardium fibres, pave the road to a better understanding of the com-
plex mechanismsof cardiac contraction.

It is a fascinating era in mechanics for which classical knowledge is enriched
with new concepts— for better understanding nature and theman-madeworld.
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(a)

(b)

Figure 11. Emergenceof periodic trains of nerve pulses according to (102), (103):
(a) space-time plot, (b) profiles [57]
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(a)

(b)

Figure12. Annihilation processof pulses at head-on colli sionaccording to (102), (103):
(a) space-time plot, (b) profiles [57]
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