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COMPLEXITY INMECHANICS*

Abstract. Contemporary complexity science deds with problems invalving many variables
which interad with ead other (and with the ewironment) in such a way that new quality
appeas. Nonlineaity is a mrnerstone of complex systems which as a rule ae far from
equili brium and exhibit properties of emergence of coherent structures, possbly over many
scdes. Generdized continuum theories incorporate intrinsic microstructural and norlinea
effeds in the medhanicd behaviour of solids. The dfeds like emergence of solitary waves
and solitary wave structures, scde-dependence and wave hierarchy clealy demonstrate that
contemporary mechanics exhibits many complex effeds. In this paper, norlinea wave prop-
agation in microstructured solids is analysed as a significant example of complexity. The
basic models are derived from the canoricd (material) momentum equation where the inter-
adion forces are separated. Novel concepts like dual internal variables and wave hierarchy
are described. Besides lid medanics, some insights into fluid dyramics and bophysics
are dso given and some numericd results presented.

1. Introduction

The long Hstory of mecdhanics has reveded many brilli ant ideas which have shaped
the modern uncerstanding of the world. The grea schadlars like Archimedes, Galil e,
Newton and athers were later followed by Euler, Lagrange, and Laplace just to men-
tion a few names among many. One of the charaderistic feaures of scientists in the
past was their commitment to many problems of medhanics, mathematics, optics, etc.
Solids and fluids were often bah treaed ali ke by Newtonin his Principia. Many prob-
lems lved by ou predecesors are now clasdcd examples, such as the movement of
planets, the threebodysystem, movement of a penduum, waves onthe freesurfaceof
fluid — thislist can easily be prolonged. Closer to the present time, spedali sationwas
needed in order to overcome amyriad of spedfic detail s and navadays the communi-
tiesaround orefield usually mee at spedalised conferencesand pubdish their findings
in spedalised journals (IUTAM congesses are one exception). Armin Toffler, in his
prefaceto the book by Prigogne and Stengers [42], says. “One of the most highly
developed skill sin contemporary Western civili zaionis disedion: the splitting-up o
problemsinto their small est possble componrents. We ae goodat it. So good we often
forget to pu the pieces bad together again”. Isthisredly so? What happens when we
put the pieces bad together?

Theideaof putting things bad together is not new. Said Aristotle: “The whale
is more than the sum of the parts’. And again it is medanicsthat has brougtt this old
knowledgeto our contemporary understanding. The basic nationthat “ has changed the
world” is norlineaity. Althoughthe inverse-square law of gravitation was introduced
by Newton, it was much later that H. Poincaré understood its importance when he
solved the threebody problem. But only in the mid-twentieth century did concepts
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like solitons, chaotic atradors and ather members of the norlinea “zoo0” make dea
that new quality is born if congtituents of awhale interad with ead other norlinealy.
Nonlinea dynamics has brough many new idea not only to medhanics but also to
many other fields — biology and chemistry, econophysics and socia studies, not to
mention many other physicd processes. In this way, the development spiral involves
many fieldstogether just likein the past. Thereasonis dmple— theworld around tsis
norlinea andsimil ar patternsemergein various process, similar methods can be used
in studies of various fields, and a language uniting dff erent studies is understandable
to the general community of scientists. In short, the world is complex and complexity
reseach, as it is now understood, is an intrinsicaly transdisciplinary enterprise. A
complex system is compased of its constituents, small elementsthat interad with eat
other resulting in emergent properties of the system as a whole. The dtation abowve
by A. Toffler reflected the general understanding, but the monogaph byPrigogne and
Stengers[42] itself isaproof of the contrary and describesthe ealier ideas of complex
systems. More recent tredises are, for example, the monogaphs by Christiansen and
Moloney [9], and Nicolis and Nicolis[40].

In what foll ows, the mecdhanics of solidsis analysed from the viewpoint of com-
plexity. The analysisismostly based onstudies of CENS (Centrefor Nonlinea Studies,
Ingtitute of Cybernetics at Talli nn University of Tedhndogy) during the last decale d-
throughthe preliminary ideas were dready presented ealier [14]. The starting pdnt is
abrief overview on general theories of microstructured solidswith aspedal attentionto
modelli ngthe hidden internal structure. The mathematicd modelsderived acrdingto
novel concepts refled the hierarchicd structure of solids at various scdes. Nonlinea-
ities are briefly described in order to bring the mathematica models closer to redity.
In this presentation, two main questions are adualy addressed. The first is. how to
model deformation waves in solids with their physicd structure, i.e. taking into ac
court congtituents. The secondrefersto the links between the constituents, or closer to
medahanics, the forces between the constituents. The result i s not surprising— norlin-
ea medanicsisatypicd example of complexity. The last part of this paper is devoted
to general problems and/or spedfic examples drawn from the analysis of waves.

2. Basictheory

2.1. Motivation

The conventional theories of continua describe the behaviour of solids and materi-
als respedively. In redity, however, materials are dways charaderized by a cetain
microstructure & various cdes (see[23]). The dharader of a microstructure can be
regular (like in laminated compasites) or irregular (like in pdycrystalli ne solids or al-
loys). Furthermore, regularity and irregularity may be combined like for some FGMs.
The charaderistic scde | of a microstructure must always be compared with the spa-
tial scde L of an excitation. Intuitively spe&ing, if L > | then the excitation “does
not fed” the microstructure; if, however, L ~ | then the excitation“feds’ strongy the
microstructure.
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In general terms, the starting pdnt for describing a microstructure could be
either the discrete or the continuum approach. In the discrete gpproach the volume
elements are treded as point masses with interadion [1, 34, 36]. The aucia point
then is to assume the functional dependencies of interadive forces between discrete
masses using energetic considerations. The discrete gpproach is often used for lami-
nated composites and then the df edive stiff nesstheory may usefully occur [45, 50].
As a result, the governing equations describe a cetain continuum the properties of
which are related to the initial discrete system [36]. From the viewpoint of continua,
straightforward modelli nglealsto the assgnment of all the physica propertiesto every
volume dement dV in a solid, which means introducing dependenceon space ©ordi-
nates. Thus, the governing equations are so compli cated that they can be solved only
by numericd methods.

Althoughthe discrete gpproach seems to be gpropriate for modelli ng the mi-
crostructure, the question o how to determine the interadive forcesin order to reflea
material propertiesis difficult to answer. That is why the generalized continuum theo-
ries am to be more plausible.

Generdlised continuum theories extend conventional continuum mechanics for
incorporatingintrinsic microstructural eff edsin the mecdhanica behaviour of materials
[8, 21, 22,37, 53]. A leading concept is to separate maao- and microstructurein con-
tinua and to formulate the conservationlaws for both structures separately (see for ex-
ample[21, 37]). However, amore sophisticated way isto introducethe microstructural
guantities into one set of conservation laws [31, 35]. It seems that such an approach
is extremely useful for two reasons: (i) it refleds clealy the mechanicd structure of a
solid; (i) it allows further generalisationin order to include internal variables and cast
more light on the thermodyramicd charader of wave motion.

2.2. Balancelaws

Thelocd balancelawsin the so-cdled Piola—Kirchhdf f ormulation are [31] for mass
linea momentum, and energy, respedively:
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Here po is the massdensity in the reference mnfiguration, v is the physicd ve-
locity, x isthe position of amateria point X in the reference mnfiguration, x = x(X,t).
T isthefirst Piola—Kirchhdf stresstensor, fq is the bodyforce per unit referencevol-
ume, X = K+ E, K isthe kinetic energy, E is the internal energy per unit reference
volume. Q isthe material hed flux, Sisthe entropy density per unit referencevolume,
Sis the extropy flux, 0 is the @solute temperature, and K is the extra entropy flux
(which vanishes in most cases). The balance of momentum (2) is the most important
gowerningequationfor wave motion. Itispossbleto reformulate aj. (2) so that therole
of material forces exerted on material inhamogeneitiesis explicity seen. For that the
equation of balance must be written onthe material manifold o/ 3 of points X consti-
tutingthe body. Thisisdone by Maugin[31, 35] and here we foll ow hisideas (see dso
[2]). Learing aside the technicd detail s, the canoricd (material) momentum equation
reals

(5) P — Divgh = M 4§ 4 finh
ot |,
where the material momentum P, the material Eshelby stressb, the material inhamo-

geneity forcef inh the material external (body) forcef®*, andthe material i nternal force
fI" are defined by

(6) Pi=—pov-f,
@ b=—(LIg+Tf),
i 0% 0.4 1 oW
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Heref = 0x/oX| =X, £ =K-W, W =W(f,...,X,2) and the subscripts expl

t
and impl mean, respedively, the material gradient kegoing the fields fixed and taking
the material gradient only throughthe fields present in the function.

The energy conservationis governed by
0(S8) it it - 0w
11 —_— 0.-Q=h W =T:F—- —
ay | e, .
and the seaondlaw by

(12) DB+ S- 050 < h™ + O (BK).
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2.3. Internal variables

Althoughthe presentation o the balancelaw in form (5) includes the forces caused by
inhomogeneities, i.e. by the constituents, their charader neads more explanation. One
step forward isto separate variablesinto observable andinternal variables[30, 32]. The
ohservablevariablesare the usua field quantiti eslike dastic strain or displacement that
are ohservable in the red sense of the word. Internal variables however are suppcsed
to describe the internal structure of the solid (or body, in general) and are not observ-
able. This means that internal variables shoud compensate for our ladk of a predse
description o a microstructure. There ae several examples [32] which demonstrate
how liquid crystals, damage or dislocaion movements can be described easily using
the concept of internal variables. Recently the concept of internal variables has also
been used for describing the dynamics of microstructured continua [4, 55]. Here we
follow these ideas with K = 0.

We mnsider asingleinternal variables of state o asaseond ader tensor. Then
the free energy per unit volume W is gedfied as the general sufficiently regular (dif-
ferentiable) function

(13 W=Wf,6,a,:0).
Then the equations of state ae given by
oW oW oW oW

=5 S= A=——r 2=

(19 T 00’ oa’ o0

From (10) and (14) we obtain now

(15) fint :ftthfintr

(16) fth—ge, M —A:(0ua) +a 0y (0a)'.
From (11) and (14) it foll ows that

(17) hint _ hth + hintr

(18) hh—s8, h™—Ara4a: (D).

Now the governing equations (5), (11) read
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Here we have
(21) b=—(LIg+T -2 : (G)").
(22 fintr— 7 (DRG)T, 4 =A —DivgAa.
(23 Q=Q-a:4a,
(24) ht=2:a.

The simplest choiceto satisfy the disspationinequality in an isothermal caseis

(25 a=ka, k>0
Thisisadualy areadion-diffusiontype equation
(26) a =k (A —Divga)

which can be foundin numerous applicaions. This graightforward approach can be
generalized by introducing the dud internal variables a and B, eat of which is a
semnd-order tensor [55]. Theideaof dual internal variables was originally introduced
to explain the links between internal variables and internal degrees of freedom. It is
shown later [4] that such a generalization permits one to better interpret the behaviour
of microstructured continua

Thefree energy shoud now be taken in the form
(27) W=W (f,6,a,a,B pB).

In additionto equations of state (14) we have

B B = “op

The canonicd equation d momentum keepsits form (19) but now [5]

(28) B:= _Oﬂ : ow

(29) b= (Llp+T-F-a: (D) -3 : (G0:B)7).

(30) M =2 : Oa+3 : OB,

(31) % — B— Divg3.
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In order to satisfy the disspation inequality, the smplest form of evolution equations
fora andBis

d ;qj Lll LlZ
32 (B>L<%>(Lﬂ Lzz)(
where the comporents of the linea operator L are dependent on state variables [24].

It is possble to decompose L into the sum of symmetric and skew-symmetric compo-
nents. Based again on dsdpationinequality [5], we get

a L1 0 a 0 L2 a
@ (5)=(% L22)<%>*<L12 o><%>'
In the case of non-disspative proceses the fully coupged evolution equations
aresimply

SSRIRSI

(34) a=L23, B=-L123.

In this casg, the evolution o oneinternal variableis driven by another one that
expresses the dudlity between the internal variables. In the usual context of internal
variablesthe resulting evolution equationis of the readion-diff usiontype (cf. eqg. (26))
which demonstrates that the internal variable is not inertial. In case of dual internal
variablesitisaso possbleto acmurt for inertial effeds. For example, let 3 = 0. Then
the free anergy functionW (see(27)) isindependent of [, and relations (34) reduce
to

(35) a=L12B, B=-L123.

Let us assume further a quadratic dependenceof the free energy with resped to
B. Then B = —B andinstead of (35) we have

(36) a=-L12B, PB=-L123.
This g/stem can be written as one equation
(37) 6= (L1211 1,

which is a hyperbadlic evolution equation for the internal variable a. In physicad terms
it means that the inertia of the internal variableis taken into acourt (cf. eq. (26)).

2.4. Micromorphic dasticity

Mindlin[37] hasformul ated an elegant theory for describingthe microstructured solids.
In his presentationthe microstructureis*“interpreted asamoleaule of apolymer, a ays
talite of a palycrystal or agrain of agranular material”. We know now several modi-
ficaions of the continuum theory (seefor example, [8, 22]) but the Mindlin micromor-
phic theory is extremely well suited for describing the wave processs in microstruc-
tured solids becaiseits clea physica reasoning. Here we foll ow his presentation [37]
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and then show that his model of a microstructure can be eaily formulated in terms of
internal variables.

The displacement u of amaterial particle in terms of maaostructure is defined
by itscomporentsu; = x; — X, i = 1, 2,3, wherex;, X; arethe comporents of the spatial
and material position vedorsx, X, respedively. Within ead material volume (particle)
there is a microvolume and the microdisplacement u’ is defined by its comporents
u = x — X/ where the origin of the aordinates X' moves with the displacement u’.
The basic assaimption o Mindiin is that the microdisplacanent can be expressed as a
sum of products of spedfied functions of x| and arbitrary functions of x; andt. Then
the first approximation o this assumption is U = X W (xi,t) and consequently the
microdeformationis

ou|
(39 a_Xf = Uij (%, 1),
andthe relative deformationtensor isyij = 0juj — UJjj.

A microdeformation gradient is then

(39 Kijk = 0iWik-

From the variational equation of motion, we obtain the following gowerning
equations (no bodyforce):

(40) Polj = 0i(ij + Tij),

1 i
(41) gp/dﬁlbik:ai(wijrTjk)-

Here yj isthe Cauchy stress 1jj therelative stressand ;; the doulde stress in addition
p’dﬁ isamicroinertiatensor where p’ isthe density of the microstructure. The balance
laws (40) and (41) for maao- and microlevel are introduced independently. The next
step will beto introducethe free aergy density W and then determine

ow ow ow
42 Oij = —, T = —, o — .
(42 i 3e; ij 3 Mijk i
Now we gply the internal variable theory described in Sedion 23. We need to repre-
sent the constitutive relations in terms of distortion d;ju; and microdeformation tensor
Pji. Thenthe stresses are
ow’ ow’

4 = L

where W' is rearanged in terms of dju; and ;. The doulde stress j remains un-
changed. Then egs. (40), (41) can be rewritten as

(44) Polij = 0i0jj,
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1 )
(45 ép/dizjlpik:ail-lijk*'f/jk-

We aonsider now the microdeformationstensor j; as an internal variable o and apply
the formalism shown in Sedion 23. Obviously the microdeformation gradient Kijj
playstherole of the gradient of the internal variable a and consequently (thisisanon
disdpative cae) it must be adual internal variable B. Then, following (37) we may
write

@ am oo e (0 oy WY

Interms of jj, eq. (46) yields

ow Y
- + Div = Oikijk — Tiy.

oW a(Dwm) ik

This equation coincides with (45) which is derived diredly from the Mindlin

theory. However, there is an important diff erence — this equation o motion is not
derived from the balance of momentum but it follows from the disspation inequality
(seeSedion 23 and expressonsfor h™") for the chosen functional dependenceof free
energy in the considered nondsspative cae.

(47) (L2 le)}libik _ (

2.5. One-dimensional case

This is the simplest case but demonstrates clealy the physicd effeds, espedally the
scde-dependence First we follow diredly the ideas of the Mindlin theory [17, 19]. In
the 1D case we droptheindicesi, j,k and ded with u and @ only, the indicest and x
denate here diff erentiation. The balance laws were derived by Mindin [37] from the
Hamilton (variational) principle, here we use Euler—Lagrange equationsin term of the
Lagrangian .2 = K — W and u, . The kinetic energy K and the freepatential energy
W are now

1 1
(48) K=Spu+S10f, W =W (ux, 4, b,

where | ismicroinertia.
The Euler—L agrange equations have the general form

0.7 0.7 0.7
“9 () ()% o

0.¢ 0.¢ 0.7
0 <a—wt)t ! (wa)x_ ETiak

Note that we negled here the doulle stress;jx but we have two balance laws.
Let now the patential energy W be aquadratic function, i.e. we lookfor alinea case:

(51) W= %auerAuner % By? + %cqﬁ,
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where a, A, B,C are wefficients, usually a = A + 2u with A, p being the Lamé parame-
ters. Leavingaside thetechnicd detail s (see[17]) we ariveto the system of equations
of motion

(52 Polkt = @y + AUy,

(53 [Pt = CPyx — Aux — BY.
This is adually a system of two balance laws that must be solved with proper initia
and boundry condtions.

Now we use the concept of dual internal variables. The patential W depends
now on uy and ontheinternal variables a, 3 and their derivatives

(54) W =W (ux, o, 0x, B, Bx) ,
where o and 3 are scdar quantiti es. We set

oW ow ow oW oW
(55 0-—a—uX7T-——W,r]-——aT(X;E-——E7Z-——a—BX-

Only onebalance equationis needed for the maaostructurewhichinits Smplest
formis

(56) Polt = Ox.

Following egs. (34) for internal variables and cdculating 4 and 3, in terms of
(55) we obtain

(57) a=l12(E~ &), B=—l2(t1—ny).
Following eg. (51) we asaume again that the potential i s a quadratic function
1 1 1 1
(598 W= éauerAaumL EBGZ—l— ECG)Z(—F EDBZ,

where dl the mefficientsa, A,B,C,D are mnstants. After cdculating the constitutive
guantiti es (55) from (58), we obtain

(59 o=aw+Ad, n=-Cayx , (=0,
(60) T1=—-Aux—Ba , &=D}.
Then we have a = |1,D and from the evolutionequationfor B (57») it foll ows that
(61 = —15D(T—nx).
Asaresult, from (56) and (61) we arive & the equations of motion
(62 Polkt = alkx+ Ay
(63 lai = Coyx — Aux — Ba,

wherel =1/ (14,D) isthe microinertia. It is easily seen that the systems (52), (53) and
(62), (63) areidenticd provided we take ) asthe internal variable a.
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2.6. Hierarchy of waves

Waves in microstructured continuum exhibit the hierarchicd behaviour in the sense of
Whitham [58]. It means that a scde parameter & plays an important role. Depending
on its limit values, 6 — o or & — 0, one or ancther wave operator governs the pro-
cessasymptoticdly. In our case the hierarchicd behaviour is governed by a parameter
which isthe ratio of the charaderistic scde of a microstructure and the wavelength of
the excitation.

Thereisnosuch ascde parameter in the governingeguations (52), (53) or (62),
(63). First we note that the system of two second-order equations can be represented
also in the form of one fourth-order equation. In terms of the maaodisplacement u it
reals:

(64) Ut = (C§— CR) Uex— P° (Ut — G Uxx), + P* €5 (Uht — G5 Uxx) 1y

where ¢3 = a/po = (A +2l) /po, €3 =C/I, c& =A%=A%/poB, and p? =1/Bisan
inherent time constant. It is obvious that this model involves sveral wave operators.
Let usnow introducedimensionlessvariables and parameters. First, let the scde of the
microstructure bel andthe excitation charaderised by its amplitudeUg and wavelength
L. Then we carintroduce

(65) U=u/Up, X=x/L, T=cot/L, & =12/L? e=Up/L.

We dso suppase that | = pol?l*,C = 12C* where |* is dimensionlessand C*
has the dimension o stress Notethat | is ded against po, so that any difference of
densitiesis embedded in I *. By an asymptotic analysis[19] after introducing (65) into
(52), (53) we get finally

CA CA o
(66) Urr = (1— —2) Uxx + = (UTT - = Uxx) )

C C C

0 B 0 XX

where ¢ = BL?/I. Note that c3 involves the scdes L and | and cZ includes the in-
teradion effeds between the maao- and microstructure throughthe parameter A. It
means that
G g

(67) & ol vk
Equation (66) refleds explicitly the hierarchicd nature of wave propagationin
microstructured solids: if cﬁ/ ¢4 is gmall then waves are governed by the properties of
maaostructure; if however, ¢z /c3 is large, then waves “fed” more microstructure. In
absence of the interadion between maao- and microstructure (i.e. when A = 0), the
wave operator in termsof U is smply Urt — Uxx.

For comparison with (64), the dimensions may be restored in eg. (66). It then
reads:

(68) Ut = (Cg - C%\) Uxx — pZC% (Utt - C% uXx)xx'
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It is obvious that the gpproximated model (68) negleds wy: completely while
the influence of Uiy is different in (64) and (68). The dispersionanalysis [41] permits
to establi sh the ranges of appli cabilit y of the derived asymptotic model (66).

It is possble to develop such a hierarchicd modelli ng further by introducing
multiple scdes. The nedl is obvious from the general analysis of physicd structures
of solids [23]. Following the Mindlin model it means in physicd terms that every
deformable cdl of the microstructureincludes new deformable cdls at asmaller scde.
So material is uppased to be compaosed bythe maaostructureincluding microstructure
at a cetain scde that includes microstructure & some smaller scde. Then insteal of
system (52), (53) we obtain a system of threebalancelaws[19]

(69) PoUrt = alkx+ A1,
(70) [1 Wit = CrPyx — Arux — B1l + Aoty
(71 I2 Pt = Cobyxx — AP — B2,

where l;, A, Bi,Ci,i = 1,2 are material parameters like previoudly dencting the param-
eters for microstructures 1 and 2, respedively. One neeals here two scde parameters |y
and |, against the excitation wavelength L. Using the similar asymptotic analysis like
abowe, the two-scde hierarchicd equationtakes the form [19]:

U = (C5—CA1) Uxx+ PICA1 [kt — (CF — CRo) U],
(72) —PECA1 P5CR, (Ut — €5 Uxx) 1y

wherect =Cy/l1, Giy=A%/poB1, C5=C3/l2, Cip=A3/I1Bz, andpi=11/By, p3=
I2/By. Parametersci, ca are velocitieswhile p; are time constants. This equation must
be comparedto eq. (64). It isobviousthat the result is a step closer to crystal structures
of materials[34] and includes more dispersive dfedsfor small er wavelengths.

2.7. Nonlinearities

In very general terms nonlineaity means an imprint of nature forbidding additivity
in many aspeds. In this $nse, linea models are just a first approximation where
the assumption o propationality dominates. As said before (seethe Introduction),
norlineaity is a cornerstone of complexity. Indeed, if the interadion o constituents
or parts of a complex system is noredditive, then the behaviour of awhadle is diff erent
from asimple sum. There ae many sources of norlineaiti es influencing wave motion
in continua[14):

— material (physicd) nonlineaities, i.e. congtitutive law(s) i/are norinea; in terms
of stressstrain relationsit meansthat the potential energy W has terms of higher
order than quedratic;

— geometricd nonlineaities; i.e. deformation (cf. strain tensor in its full form);
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— kinematicd norlineaities, i.e. convedivity, compoundmotion, etc.;

—structural nonli neaiti es; for example, dueto constraintsli mitingthe motion o struc-
tural elements;

—combined norlineaities; i.e. couding d fields.

Why are nonlineaities important in modelli ng the wave motion? Nonlinear models
(see[6, 12, 14, 28, 34, 58]) are &le to describe distortion of wave profiles (spedral
changes), amplit ude-dependent vel ociti es, interadion o waves, spatio-temporal chaos,
and ather important physicd effeds, going also beyondthe dastic limit.

But nonlineaities are not the only sources of complexity, often there ae other
effeds influencing (in this context) wave motion. This is also the cae of waves in
solids. The other effeds could be dispersion, disgpation, forcing, couging with other
fields, etc. Espedally interesting are caes in which norineaity is balanced by aher
effeds. So solitons and solitonic structures may emerge if norlineaity/ies and ds-
persive dfeds are balanced, shock waves and dsdpative structures may emerge if
disdpation and norineaity are balanced, and forcing in norinea systems may lea
to chaotic regimes.

This paper is focused on microstructured solids. The models described above
have introduced dispersive df eds to maaomotion due to microstructure. If we intro-
duce now physicd norlineaities into the models then the results are following [17].
First, the potential energy W is assumed in the form (cf. eg. (52)).

1
6
where M and N denate the parameters of norlineaiti esfor maao- and microstructure,
respedively. Thisisthe first step of generalisation while it is posgble to asauime dso
more aubic terms. However, this approximation reveds interesting effeds into the
analysis.

Followingthe ideas of Sedion 25, we get the governing system of equations

1 1 1 1
(73) w=> aw + AljJux+§BljJ2+§CljJ)2(+ Nu§’+6|v|m§,

(74) PoUtt = OlUyx + NUyUyx + Ay,

(79 I Wit = CPyx + MUyWixx — Auy — B,

Again we introduce the dimensionlessvariables (65) and scding asin Sedion
2.6, asuuming in addition, M = M*I3. Then we obtain the hierarchica equation (cf.
eg. (66)):

A 1 2
UTT: :I_—C—g UXX+§kl(UX)X

A o 1 2
(76) + o (Urm—gUxx ) +3 k2 (Ustx) o »
Cg ) XX
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where k; = Ne/a= Ne/(A +2y) and ko = 8%/2 (A3M*¢) / (aB®) are the parameters
expressng the strengths of physicd nonlineaities on maao- and microscde, respec
tively. The leading wave operators in the equations of motion (66) or (76) are of the
seoond ader and describe in the 1D setting bah left- and right-travelling waves. The
higher order terms in this non-disdpative case ae resporsible for dispersion. In many
fields of physics, the notion of evolution equationsisintroduced which gowern just one
wave. Physicdly it means the separation (if posdble) of a multi-wave situation into
separate waves along properly chosen charaderistics. This approach needs dretched
coordinates, for example

(77) E=ct—X, 1=¢X,

where ¢; isthe velocity from the main operator and € is a small parameter. For detail s,
see[12], [51], etc. The resulting evolution equation in terms of U /dX = v consists
usually just the wave operator ov/0t.

Historicdly, however, the cdebrated Korteweg—deVries (KdV) equation de-
rived for describing waves in shall ow water must be noted. It reads

(79) Ur + MUl + duggg = O,

where m is a norlinea parameter and d is a dispersion parameter. As shown by
Zabusky and Kruskal [59)], this nonlinea equation hes lutions in a form of a sta-
ble solitary wave, cdled soliton. The KdV equation and solitons have paradigmatic
value, such stable solutions have been discovered in many neighbouingfields: in fluid
dynamics, in plasma dynamics, and also in dynamics of solids.

From eqg. (76) it is possbleto derivethe following evolution equation[41]:

(79) Vi + Q(VZ)E + dVEEE + r(v%)zz =0,
where

N -3 G o, 1 A2
(80) q_4pcz, d= 52 r_s@, c _B(a—g).

If A= 0 (no microstructure exists), then eg.(79) yields a KdV equation. In
eg. (79), however, the maao- and micro-norlineaiti es bath are of importance

A standardized (normalized) KdV eguation has an elegant form
(81) Wy + 6WVVE + Wggs = 0,

which is obtained from eq. (78) by settingu =w/mand& — d¥/3¢, w — 623w, T — 1.
In these terms eq. (79) reads[44]

r
(82 Wr + BWW + Wegg + 3@(\/\%)& =0.

The last coefficient on the left of (82) shows that in a normalized form micro-
norineaity isweighted in relationto the maao-norineaity and dspersion.
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3. Complexity

3.1. General ideas

Complexity science was briefly described in the Introduction. Here, after analysing
the basic models of microstructured solids with naions of interading constituents, in-
ternal variables, hierarchy of waves and norineaity, we return to basic principles of
complexity. Taylor [52] has identified the following charaderistics of complex sys-
tems: complex systems are comprised of many different parts, which are cmnreded
in multi ple ways; complex systems produce global emergent structures, generated by
locd interadions; emergence occurs far from equili brium; complex systems are typi-
cdly nonlinea. But complexity does not mean chaosin its physicd sense, emergence
usually occurs at the edge of chaos [26, 52]. If something is at an edge, then cer-
tainly both sides must be caefully studied — in context it means that both order and
chaos [42] must be properly analysed. Mecdhanicsis full of examples of chaotic mo-
tion, starting from the threebody system and nodinea penduums to the cdebrated
Lorenz atrador describing convedion in the amosphere [38]. Prigogne [42] said:
“One widely-studied example was the threebody system, perhaps the most important
problem in the history of dynamics’.

Anocther important isaue in complex systems is their multiscde structure. The
system behaves diff erently on amaaoscopic level than onthe microscopic level. That
leadsto certain hierarchieswhich are linked physicaly and shoud aso berefleded by
proper mathematica models. Modern developmentsin complexity studies are couped
with norlineaities and scding. Certain universal arguments help us to make progress
within a wide range of problems nat only in solids, fluids and soft matter but also in
biology, chemistry and social sciences.

In Sedion 2abrief description of generali zed continua was presented which is
extremely important for contemporary advanced techndogy, including materials <i-
ence and highintensity or high frequency dynamic processesin solids. Althoughfluids
were not touched, many processes, espedally norlinea wavesin fluids are governed by
similar models. But turbulence, vortex dynamics, and so forth, form spedal chapters
in fluid dynamics and without any douli represent excel ent examples of complexity.

Let usnow colled the essential feaures from theories presented briefly in Sec
tion 2 Hierarchy is clealy evident from the model equations (66), (68),(72). Thisis
the manifestation of multiscde structures of the matter [23]. The internal structurein
this context is modelled by internal variables which are cmnreded to thermodynamic
condtions. The second law of thermodynamics [42] is therefore one of the govern-
ing equations in modelling of waves in microstructured solids. We have dso shown
that physicd norlineaities can easily be taken into acourt resulting in a norlinea
hierarchicd equation like &g. (76).

The hierarchicd models describe dispersive dfeds dependent on scde fador.
The dispersive and norinea effeds together may lead to the emergence of solitary
waves. Thisdemonstratesthe universality of main ideas of complexity because solitary
waves may emergein fluids andin solids.
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Figure 1. Soliton trains emerge from pulse-type initial condtions ac@rdingto (76) [20]
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Figure 2. The amergence of solitons hown in the spacetime plane, acordingto (76) [20]
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Besides dructural hierarchies as described abowve, functional hierarchies may
also be of importance Thisis evident, for example, in biophysics where processes at
variouslevels of scde caninfluence eab other (morein Sedion 33).

3.2. Examplesfrom medhanics

One of the cdebrated norlinea phenomenaisthe emergenceof solitons. Thisisposs-
blewhen norinea eff edsare balanced by dspersive df eds. It all started with the KdV
equation [59] but eq. (76), which describes waves in microstructured solids, displays
a similar phenomenon Contrary to the evolution equations, this is a two-wave equa-
tion. The emergence of solitons adtually means the emergence of strain (a sequence)
of solitons which all propagate with diff erent velocities. The processof emergence of
two soliton trains from asingle pulse-typeinitial condtionis shownin Fig. 1 [20] for
discrete time moments. Fig. 2 demonstrates the similar processin the spacetime plot.
Theresults are obtained by using the pseudaspedral method

In the dasdcd KdV case (eg.(78)), the emergence follows a similar pattern
resulting in ore train of solitons. Zabusky and Kruskal [59] studied the emergence
of solitons from a harmonic initial condtions. They identified an emerging soliton
train with a cetain number of solitons and the processof reaurrence — after several
interadions of emergent solitons, the initial situation is restored. Their cdculations
were caried ou until thefirst reaurrencetime tr. The cdculationsupto 100...2001R
have reveded aremarkableregular pattern of trajedories of single solitonsin the space
time plane[18]. These patterns are shown in Fig. 3 while in time units shown there the
reaurrencetimetr =~ 30. Thestriking periodicity is easily seen from therhombus-like
patterns (herem=1, d, =2,3209 d, = —logd), initial condtionu(g,0) = —sing,
boundry condtionsare periodic.

Periodicity is usually related to certain periodic initial condtionsor to periodic
external forces. In this case some resonance may occur. Here we present results when
the processis modell ed by a standard KdV equationwith aright-hand side term:

(83 U + MUtk + dukx = T (u),

where we take f(u) = a1 sinPiu with o131 being constants [18]. Here x andt are the
moving coordinates like (77). The dependenceon forcing perametersis observed. For
example, the wave profiles in spacetime plane for moderate and strong forcing are
shown in Fig. 4 and Fig. 5, respedively (m= 1). The anplitudes of emerging solitons
are anplified and instead of atrain of solitonswith diff erent amplitudes, some spedal
soliton groups will emerge. Clea periodicity of pattern of trajedoriesis sen.
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Figure 3. Rhombus-like pattern of trgjedories in the spacetime plane, model is (78):
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Figure 5. Solitonic structures with forcing, (94). Strongfield (d) = 1.4,a = 50,3 = 0.25):
(a) time-dliceplots, (b) singe profile &t =47,0 [18]

The example &owe ae dl governed by quedratic nonineaity and cubic dis-
persion which is charaderistic to classcd KdV equation. For martensitic dloys, for
example, the situation can be different [27]. Then the dispersion is quadratic-quartic
and dspersion cubic-quintic. The governingevolution equationisthen

(84) U + [P(u)]y + dUsx + bus, = 0,
_ le i
(85) P(u) = 5 +4u,

where d and b are constants. This model | eads to many types of solitary wavesinclud-
ing ore interesting case of “plaited ” solitons. Such a stable soliton structureis shown
in Fig. 6, generated by asingeinitial pulse.
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The waves in hyperelastic rods are governed by even a more complicaed evo-
lution equation. For example, in a Moorney—Rivlin rod the evolution equation takes a
form[10]

(86) Ut + 01Uy + 02Uy + 03 (2UxUxx + Ulkxy) = O,

where 01,02,03 are mnstants. Again, beside other solitonic structures, a spedal
“plaited” -type solit onic structure may emerge, as hownin Fig. 7.

Asadrealy stated, the KdV equationwas originally derived for wavesin shall ow
water. The KdV soliton is constant in the diredion transversal to propagation. A
soliton alonga channel of finite width is clealy modelled by the KdV equation. On an
infinite plane, the solitons may propagatein any diredionandtheinteradion processof
solitons propagatingin diff erent diredions needs more acarrate modelli ng. Inthis case
theinfluenceof transversal diredion must be taken into acourt. In this caseinstead of
astandard KdV equation, the Kadomtsev—Petviashvili (KP) equationisused [46]. The
standard KP equationin narmalized variables (x,y,t,u) reads [47]

(87) (U 4 BULy + Uxxn) + Sy = 0,

where u has the meaning o elevation o the water surface The 1D KdV operator is
ealy remgnized between the parentheses of eq. (87). A remarkable norlinea effed
occurs in the interadion process of two solitons modelled by eq. (87) [48, 49]. The
interacdtion processmay result in a particularly high and steep wave hump. For exam-
ple, interadions of equal amplitude solitons may lead to water surface éevationsup to
four times as high as the amplitude of the murterparts and the slope of the wave front
may encourter eightfold increase. Thisis a very clea manifestation of the charader
of nonlinea processes — the whole is more than the sum of its parts! This process
isillustrated in Fig. 8 [49 for four cases with diff erent angles of propagation. The
interadion soliton (hump) is clealy deteded, for details £e[49]. Fig. 9 shows apho
tograph from ared situation. Actually it can be said that the soliton interadion may
serve & a passble medhanism for fresk waves.

3.3. Examplesfrom biophysics

Mathematicd modelling o biologicd processes and hiomedhanics means describing
the physiologicd phenomena and structural behaviour of living tisaues, organs, cdls,
neuronal networks, etc. There ae many spedfic feaures which must be taken into
acourt [56]:

— biologicd systems need energy exchangewith the surroundngenvironment and rep-
resent the systems far from thermodynamic equili brium;

— the processes operate over diff erent time scdes, are spatially extended, and include
many hierarchies;

— in physicd terms, one shoud acourt for nonlineaities, disdpation, adivity/excit-
ability, spatiotemporal couging, etc.
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Figure 7. Solitonic structure for (86), time-sliceplot [54]
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Figure 8. Interadion o two solitons ac@rding to (87), panels differ by the interadion angle.
The highest interadion solitonis shown in the lower right panel [49]

Figure 9. A red interadion solitonin the Baltic Seg nea Saaemaaisand, Estonia
(phatograph courtesy of T. Soomere)



316 J Engelbrecht

These fedures are charaderistic of complex systems, and hiophysicsis nowa
days clealy a part of complexity science under the chapter “systems biology’ [29].
The existence of scdes and, consequently, hierarchies must however be explained in
more detail [56]. Namely, in biologicd tisaies one shoud distinguish two passble
types of hierarchies: (i) a structural hierarchy, involving strong dependence on length
scdes, and (i) a functiona hierarchy meaning that at various levels of scde, vari-
ous dynamicd proceses are of importance, all of which influence the behaviour on
the maaoscde. Structura hierarchiesadually refled the enormously rich architedure
of biologicd tisues. The fundamental structura hierarchy is atom — moleaule —
cdl — tissie — organ — human. But tisales have themselves a complicaed struc-
ture which shoud be taken into ac@urnt when the stresses and strains in tisaes are
cdculated. In this ense, living tisues resemble microstructured materials. For ex-
ample, for the heat contradion the structural elements are: sarcomeres — myofibril s
— fibres — myocardium — heat. Functional hierarchies refled the complexity of
functioning hiosystems. The same example of the heat contradion hes the foll ow-
ing functional hierarchy: oxygen consumption — energy transfer — Ca?*signals —
crosshridge motion — contradion.

The concept of internal variables, explained and used abovefor microstructured
materials, can eff edively be generalized for description of hierarchiesin livingtisaues.
Structural hierarchy can easily be described by the theory presented in Sedion 23,
functional hierarchy needsagenerali zation[15]. Let the observablevariable be denoted
by x andtheinternal variable by a. The evolutionlaw for a is above given by (26), but
here we follow a simplified presentation[16, 56).

We introduce the hierarchy of internal variables a,f,y,.... The ocongtitutive
equation for a dependent variable (stress for example) o depends on the observable
variable x andthe first-level internal variable a

(89) o=0o(x,a).
The evolutionlaw for a is(cf. (26))

(89) a= fl(XaaaB)a

where 3 isthe next, second-level internal variableinfluencing o only through dyramics
of a. The evolutionlaw for B is

(90) B=fa(X,a.B,...),
whereyisthethird-level internal variable. The evolutionlaw for yis
(91) y=fa(x.a,B.y,...),

etc.

Such an approach is used modelli ngthe cadiac mntradion[15, 16]. The stress
in myocardium can be split i nto adive 0, and passve O, stresses. The passve stressis
cdculated fromthe dastic deformation o thetisale, i.e. thefree aergy must be known.
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Active stress 0, heads more sophisticaed approach. It is generated in myofibril s by
adivationandisdireded parall el to fibres

(92 Oa = 0a€1€1,

where g; is the unit vedor showing arientation. At the structural level, myofibrils are
the starting pant. A myofibril is compased of repeding urits of myosin and adin
filaments, cdled sarcomeres. The adin filaments is made of a doule helix of adin
moleauleswith troporin moleaules locdized in certain intervals. The myosin filament
consists of myosin proteinswith certain spatiall y locdi zed meromyosin moleauleswith
headsresembling“gadf-clubs’. These headsare cdl ed crossbridges. The ecitation of
amuscleistriggered by an adion pdentia from the conducting system. This potential
initsturn released Ca?*ionsin the sarcotubuar system which then adivate the troporin
moleaules 0 that they will be ale to attach the heals of myosin moleaules. This
attachingmeans swivelli ng o myosin moleaulesthat cause dli dingthe adin andmyosin
filaments against ead other. Asaresult, adive stressis creaed.

We start from the maaolevel down. The force on adin moleaules (along the
adin filament) depends on the distance z between an attached crosshbridge and the
neaest adin site. There ae two states throughthe ¢ycle, producing force. Denating
them by A and B, we may cdculate the crrespondngforces by

(93 FaA=Kaz, FB=Kgz

where Ka, Kg are dastic constants. Further we take Ka = Kg = K. Thetotal force over
a sarcomere of the length I5 depends on the number of crossbridges between z and
z—dzin bah states. We take the uniform distribution of crossbridges in z over an
interval d. The adive stressis then found by

(99 O = mZIZK (/d/z na(2) dz—y/d/2 ne(2) dz) ,

—d/2 —d/2

where m is the number of crossbridges per unit volume and na(z),ng(z) are relative
amourtsof crossbridgesproduwcingforce(i.e. beingin states A andB). Thesevariables,
na and ng are nathing else than the first-leve internal variables. They (cf. Sedion 2.3)
are governed by the foll owing evolution equations

O, M

(95) WjLW 37 = finc+0g2ng — (g1+ f2) Na,
on an
96) a—tBJrWO—zB = fyna—(g2+ f3) ng,

where w is the velocity of lengthening, f1, f, f3,091,02 are kinetic constants between
the states and nc is the anount of crossbridges that does nat produceforce. Clealy
the summation of all adivated crossbridges gives

(97) A=na+ng+nc.
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Now, A isthe next, i.e. the seaondleve internal variable, the changes of which affeds
the variable g, only over na, ng. Theinternal variable A (the adivation parameter) has
its own evolution equation

dA

(98) qr=C (Is) [Ca®"] (1—A) —cz (Is) A,

with c1(Is), c2(ls) as certain parameters. Equation (98) invalvesthe third-leve internal

variable [Ca®*] which must be governed by its own evolution equation

d [Ca®t]
dt

(99) =f ([ca?™]).
In pradice, the last equationis usually replaced by the goproximation of experimental
CUrves.

So, in this case the variable 0, isinfluenced by threelevels of internal variables
that form a hierarchy.

The cdculations of contradion are performed by using this model and FEM for
the idedized spheroidal | ft ventricle [15, 56)].

Anather important problem in biophysicsis the pulse transmissonin nerve fi-
bres. A nerve pulseisadualy an adion pdentia which is transmitted down the aco-
plasm core of a nerve fibre. The processis acampanied by the ion currents through
the membrane. These aurrents adualy “feed” the processwith energy and as a re-
sult, a stable asymmetric solitary nerve pulse propagates along the fibre. The cd-
ebrated Hodgkin—-Huxley model has gedfied the ion currents by introducing three
phenomenologicd variables n, m, h [25]. Variable n governs the potassum conduc-
tance (turning or), and m, h govern the sodium condictance (turning onand df, re-
spedively). Together with parabdlic (inductance negleaed) telegraph equations and
expressons for ion currents, this Hodgkin—-Huxley model is carved on a stone tablet.
A very useful smplification of the model i s cdl ed after FitzZHugh-Nagumo [39] which
includesonly oneion current cdled recovery variable. Engelbredht [11] has derived an
evolution equation for a nerve pulse based onfull, i.e. hyperbalic telegraph equations
and FitzHugh-Nagumo typeion current (see dso [13)]).

The evolution equation is certainly an ore-wave equation. In suitably chasen
variablesit reads for the adion pdentia z

(100 Zex+ 1(2z +9(2) =0,

with f(z) = ko+kiz+ ko2 and 9(2) =goz Hereko, k1,ko,go are mnstantsandtheroots
of f(z) =0arez > 0,21 > 0,71 # 2. Theindependent variable § = cot —xwherecp is
the velocity of pulse. This equation must be solved uncer initial excitation z(0,§) and
the proper boundry condtions. Equation (100) is able to describe (i) the asymptotic
solitary with an overshod; (ii) the dl-or-nore phenomenon i.e. the eistence of a
threshaold; (iii) refradoriness i.e. a semndadion pdential canna be generated if the
seoond stimulus is applied too soon after the first one. As an one-wave equation, if
canna be used for the description of the head-oncolli sion of pulses. A stationary wave
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intermsof n = x+A&,A = congt is described by a Liénard type equation
(101) Z +1(2Z+119(2 =0,

where ' = d/0n. In contrast to the cdebrated van der Pol equations, the roats of f(z)
are both pasitive. For a more detailed analysis of (100) and (101) see[13]. The phe-
nomenalogicd (recmvery) variablesrelated to ion current are acualy internal variables
interms of continua[32]; Maugin and Engelbrecht [33] have shown how to usethe for-
malism of internal variables for the FitzHugh-Nagumo and Hodgkin—-Huxley models.
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Figure 10. Emergence of singe nerve pulses from asinge excitation
acordingto (102 and (103 [57]

Compared to solitons in conservative media, nerve pulses also propagate with-
out changingtheir profile but have more interesting feaures. The nerve pulses are sep-
arated by a refradion length, and at head-on colli sion processpulses annihilate eat
other. Here we demonstrate some solutions to the FitzHugh-Nagumo type model [7]

(102 U =u(l—u)(u—a)— v+ Diuxy

(103 Vi = €(—V+ bu) + Davyy,
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where u is the adion pdential and v is the recovery variable — comparable to the
potassum ion current in the Hodgkin—Huxley model and to the internal variable in
continuum theory. In addition € is the differenceof time scdes of uandv, aisrelated
to velocity and D1, D, are the diff usion coefficients. Here D1 > D, andin cdculations
we may take D1 # 0,D2 = 0.

The profiles were cdculated by the pseudospedral method[57]. Fig. 10 shows
the generation o typicd pulses propagatingto right and left from the initial excitation.

Fig. 11 shows the generation o periodic pulses from repeaed excitations that
shoud be separated in time more than the refradiontime. At the head-oncolli sion, the
pulses annihil ate ead other as hhownin Fig. 12.

The examplesaboveoncadiac mntradionand nerve pulsetransmisgon demon-
strate dealy that the concept of internal variablesis applicable dso in biophysics.

4. Final remarks

Nonlinea wave motionin solids and fluids acoompanied by dspersive df eds exhibits
many charaderisticsof complexity: coherent structures, scde-dependence, hierarchies,
etc. The mncepts elaborated in mecdhanics can easily be generalized to other fields, for
example, biophysics. The examples given above demonstrate the rich world of com-
plexity in physicd and hiologicd systems. More acould be foundin longer tredises on
that topic[3, 43]. There ae many challengesfor further studies. A grea challenge, for
example, is to buld multiscde models relating mesoscopic physics to continuum me-
chanicsrefleding the existence of norlineaiti es over the scaes, dispersive/disspative
eff eds and thermodyrnamicd consistency. In studies on surfacewaves, a bresthrough
is feasible through systematic investigation o nonlinea interadions of diredionally
spread or crossng highly norlinea shallow water waves, combined with studies of
the run up d various incident waves. Clealy of importance ae the problems of tur-
bulent mixing where several methods can be used for establi shing anomalous <ding
exporents. But nonlineaiti esalso have an essential i nfluenceon neighbouingfields of
medhanics. Due to the norlineaity of opticd phenomenain anisotropic and inhamo-
geneous media, the inverse problem of phatoelastic tomography used for determining
the stressfields is norlinea and needs gpeda methodsto be developed in order to get
solutions with required acarragy. The studies on dffusion restrictions in the cadiac
muscle cdls and the regulative processs of oxidative phaspharylation permit one to
estimate intracdlular energy fluxes. These studies, together with proper hierarchica
modelling d myocardium fibres, pave the road to a better understanding o the com-
plex medchanisms of cardiac @ntradion.

It is a fascinating era in medhanics for which classcd knowledge is enriched
with new concepts— for better understanding reture and the man-made world.
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Figure 11. Emergenceof periodic trains of nerve pulses acording to (102, (103):
(a) spacetimeplot, (b) profiles [57]
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