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Abstract. The modelling of wave propagation in microstructured materials should be able
to account for various scales of microstructure. In the present paper governing equations
for 1D waves in microstructured material are presented, based on the Mindlin model and the
hierarchical approach. The governing equation under consideration has an analytical solution
only in limit cases, therefore numerical analysis is carried out. Numerical solutions are found
in the case of localized initial conditions by employing the pseudospectral method. Special
attention is paid to the solitonic character of the solution.
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1. INTRODUCTION AND MODEL EQUATIONS

The modelling of wave propagation in microstructured materials (alloys,
crystallites, ceramics, functionally graded materials, etc.) should be able to
account for various scales of microstructure [1−3]. The scale-dependence involves
dispersive as well as nonlinear effects. It is widely known that the balance between
these two effects may result in the emergence of solitary waves and solitons.

Propagation of solitary waves in microstructured solids is analysed by making
use of different models (see [3−5] and references therein). However, the crucial
point related to the derivation of governing equations is the distinction between
nonlinearities on macro- and microlevel, together with proper modelling of
dispersive effects. In [6−8] the Mindlin model [9] and hierarchical approach by
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Engelbrecht and Pastrone [3] is used in order to derive governing equations. Basic
model equations for 1D waves in microstructured material are

ρutt = σx, Iψtt = ηx − τ. (1)

Here u denotes the macrodisplacement, ψ the microdeformation, ρ the
macrodensity, I the microinertia, σ the macrostress, η the microstress, τ the
interactive force, x space coordinate, and t time. The free energy function is
considered in the following form:
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where a,B, C,D, M , and N are constants. Then, using the formulae
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, (3)

Eqs (1) are expressed in terms of variables u and ψ:

ρutt = auxx + Nuxuxx + Dψx, Iψtt = Cψxx + Mψxψxx −Dux −Bψ. (4)

After introducing dimensionless variables X = x/L, T = tc0/L, U = u/U0,
the scale parameter δ = l2/L2 (L and U0 can be amplitude and wavelength of the
initial excitation, respectively; c2

0 = a/ρ and l is the scale of the microstructure) and
making use of the slaving principle [3], the following hierarchical model equation
is obtained from Eqs (4):
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)
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where b, µ, β, γ, and λ are constants (see [7,8] for details). If the scale parameter δ
is small, then the wave process is governed by properties of the macrostructure, and
vice-versa, if δ is large, then properties of the microstructure govern the process.
For future analysis Eq. (5) is expressed in terms of deformation v = UX and lower-
case letters x and t are used for dimensionless coordinate and time:

vtt = bvxx +
µ

2
(
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)
xx

+ δ (βvtt − γvxx)xx − δ3/2 λ

2

[
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]
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. (6)

Equation (6) admits the analytic solitary wave solution

v(x− ct) = A sech2 κ(x− ct)
2

, A =
3(c2 − b)

µ
, κ =

√
c2 − b

δ(βc2 − γ)
(7)

only if λ = 0 [7,8]. If λ 6= 0, one can find a travelling wave solution v(x − ct)
for Eq. (6) in the form of an asymmetric solitary wave by numerical integration
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under asymptotic boundary conditions. The analytic conditions for the existence of
solitary waves modelled by Eq. (6) are given by Janno and Engelbrecht in [7,8]:

µ 6= 0, βc2 − γ 6= 0, c2 − b 6= 0,
c2 − b

βc2 − γ
> 0,

(
βc2 − γ

c2 − b

)3

>
4λ2

µ2
. (8)

In the present paper the interaction of sech2-shaped waves (7) is analysed
numerically.

2. STATEMENT OF THE PROBLEM AND NUMERICAL TECHNIQUE

The main goals of the present paper are (i) to simulate numerically the
interactions between solitary waves (7); (ii) to estimate the influence of the
microlevel nonlinear parameter λ on the solution, and (iii) to examine the solitonic
character of the solution. For this reason Eq. (6) is integrated numerically under the
initial conditions

v(x, 0) =
2∑

i=1

Ai sech2 κi(x− ξi)
2

, 0 ≤ x < 2kπ. (9)

Here amplitudes Ai and the widths κi (i = 1, 2) correspond to different initial
speeds c1 6= c2 and ξi are initial phase shifts. It is clear that if c1c2 < 0, head-on
collision and if c1c2 > 0, the overtaking interaction takes place, and the lower the
value of κi, the wider the initial solitary wave.

For numerical integration the pseudospectral method (PsM) based on the
discrete Fourier transform (DFT) [10,11] is used and therefore periodic boundary
conditions

v(x, t) = v(x + 2kπ, t) (10)

are applied. The idea of the PsM is to approximate space derivatives making use
of the DFT and then to use standard ODE solvers for integration with respect to
time. Due to the mixed partial derivative term δβvttxx, the model Eq. (6) cannot be
directly integrated by the PsM. Therefore we introduce a new variable Φ and apply
properties of the DFT:

Φ = v − δβvxx = F−1[(1 + δβω2)F (v)],

v = F−1

[
F (Φ)

1 + δβω2

]
,
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]
.

(11)

Here ω = 0,±1,±2, . . . ,± (N/2− 1) ,−N/2, i is the imaginary unit, N denotes
the number of space-grid points, F the DFT, and F−1 the inverse DFT. Finally the
equation
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(12)
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is solved numerically by the PsM under initial and boundary conditions (9) and
(10), respectively. Calculations are carried out using the SciPy package [12]: for
the DFT the FFTW [13] library and for the ODE solver the F2PY [14] generated
Python interface to the ODEPACK Fortran code [15] are used.

3. RESULTS AND DISCUSSION

Three different interaction cases are considered in the present section.
Travelling wave solutions in the form of an asymmetric solitary wave can exist for
all considered sets of parameters, i.e., parameters for Eq. (6) and initial condition
(9) are chosen according to conditions (8).

In order to analyse head-on collision of solitary waves with equal amplitudes,
the case where parameters for Eq. (6) are b = 0.7683, µ = 0.125, δ = 9,
β = 7.6452, γ = 6.1817, λ = 0, solitary wave speeds c1 = 0.9 and c2 = −0.9,
the corresponding amplitudes A1 = A2 = 1.0 and widths κ1 = κ2 = 0.65 is
considered. Numerical integration is carried out for 0 ≤ t ≤ 500 and the length of
the space period is 24π. The amplitudes of the waves increase during interactions
and initial amplitudes are restored after interactions (Fig. 1a) like in the case of
Boussinesq models [16]. The amplitude of the wave profile attains a value close
to the double initial amplitude at every “peak” of the interaction in the considered
time interval. However, the behaviour of the amplitude curve between interactions
varies essentially – the more interactions have taken place, the more distinctive
the changes are. Analysis of trajectories of single waves demonstrates that unlike
Boussinesq models, solitary waves are not phase shifted during interactions in the
present case. This phenomenon is reflected in Fig. 1b – after eleven interactions two
solitary waves are still in the same phase. However, the shape of initial waves (9) is
altered during interactions and it is clear that, instead of initial symmetric bell-like
waves, asymmetric solitary waves are formed, shown at t = 460.8. Therefore the
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Fig. 1. Head-on collision of solitary waves with equal amplitudes. (a) Waveprofile minima and
maxima against time. (b) The initial waveprofile and the waveprofile after eleven interactions
at t = 460.8.

96



interaction process is near elastic (i.e. the height of waves is restored but the initial
shape is slightly altered after interactions) in the present case.

In order to examine head-on collision of solitary waves with nonequal
amplitudes, the case where parameters for Eq. (6) are b = 0.7683, µ = 0.125,
δ = 9, β = 7.6452, γ = 6.1817, λ = 0, solitary wave speeds c1 = 0.9 and
c2 = −0.9115, the corresponding amplitudes A1 = 1.0, A2 = 1.0 and widths
κ1 = 0.65, κ2 = 0.202 is considered. Numerical integration is carried out for
0 ≤ t ≤ 500 and the length of the space period is 96π. In the present case the
behaviour of the waveprofile maxima and minima is similar to the case considered
above, i.e., during the interaction the amplitude attains the value close to A1 + A2,
between interactions both solitary waves restore initial values, and the behaviour
of the amplitude curves between interactions varies depending on the number
of passed interactions (Fig. 2a). The analysis of trajectories of solitary waves
demonstrates that in the present case solitary waves are phase shifted during
interactions and in Fig. 2b one can see that after three interactions at t = 335.2
the distance between solitary waves is changed compared to that at t = 0. Like
in the previous case, both solitary waves are asymmetric after several interactions
(more distinctive asymmetry can be detected for the lower one). Nevertheless, one
can conclude that the interaction process is near elastic in the present case.

During overtaking interaction both solitary waves are phase shifted but do not
restore their shape after the interaction. This case is not analysed in the present
paper.

Numerical experiments with λ 6= 0 were carried out in order to estimate
the influence of microlevel nonlinearity. Analysis of solutions for λ = 0 and
λ = 0.005 demonstrates that in the case of head-on interaction, both solutions
practically coincide – maximal differences between corresponding waveprofiles,
i.e. maxt,x(v(t, x)|λ=0 − v(t, x)|λ=0.005), are of order 0.01. For λ = 0.5 the
microlevel nonlinear effects are stronger and they are able to change the character
of interactions. In Fig. 3 the waveprofile maxima and minima reflect head-on
collision, which is less elastic than for λ = 0.

(a) (b)

0 100 200 300 400
0

0.5

1

1.5

2

 t

 v

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 x

 v

v(x, 0)
v(x, 335.2)

Fig. 2. Head-on collision of solitary waves with nonequal amplitudes. (a) Waveprofile minima
and maxima against time. (b) The initial waveprofile and the waveprofile after two interactions
at t = 335.2.
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Fig. 3. Head-on collision of solitary waves with equal amplitudes. Waveprofile minima and
maxima against time for λ = 0.5.

4. CONCLUSIONS

The characteristic feature of the governing equation (6) is that, unlike the well-
known evolution equations, it describes two waves instead of one. A similar
situation occurs for waves in rods [5]. This gives us an opportunity to analyse
also head-on collisions of waves.

In the case of λ = 0, bell-like solitary waves (9) can propagate with constant
speed and shape, but during head-on collisions the initial symmetric shape changes
to asymmetric. In the case of λ 6= 0, the initial symmetric shape is altered even
before the first interaction. Analysis of the results of our numerical experiments
demonstrates that for λ = 0 and for relatively small values of λ interactions
between solitary waves are near elastic. Consequently, the behaviour of solitary
waves is very close to solitonic behaviour. If initial waves have speeds c1 = −c2,
then solitons do not become phase-shifted during interactions. The higher the
value of λ, the less elastic the head-on collision and therefore the less solitonic
the behaviour of interacting waves. The overtaking interaction is not elastic either
for λ = 0 or for λ 6= 0.

Numerical experiments in order to analyse the long-time behaviour of solutions
over a wide range of material parameters and initial conditions are in progress.
Clearly, the two-wave governing equation, possessing solitary wave type solutions,
needs more attention in the future.
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Deformatsioonilainete interaktsioonist
mikrostruktuursetes tahkistes

Andrus Salupere, Kert Tamm, Jüri Engelbrecht ja Pearu Peterson

Mikrostruktuursetes tahkistes toimuva lainelevi modelleerimisel tuleb arvesse
võtta erinevaid mikrostruktuuri mastaape. Põhivõrrandite tuletamisel on eriti olu-
line mikro- ja makrotaseme mittelineaarsete efektide eristamine ning dispersiiv-
sete efektide adekvaatne modelleerimine. Artiklis vaatluse all olevate ühedimen-
siooniliste lainete levi kirjeldavate võrrandite tuletamisel on kasutatud Mindlini
mikrostruktuurse materjali mudelit ja lainehierarhiate teooriat. Kuna kasutatavatele
võrranditele eksisteerivad analüütilised lahendid vaid teatavatel piirjuhtudel, siis
on lahendite leidmisel ja tulemuste analüüsimisel kasutatud numbrilisi meetodeid.
Põhitähelepanu on pööratud lahendi solitonilise iseloomu selgitamisele.
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