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Abstract

In contemporary technology, high-speed loading, high frequencies and high-amplitude
excitations are widely used. For proper analysis, the microstructure of solids must
then be taken into account. Together with nonlinear effects, the dispersive effects
due to the microstructure are of importance. In this paper, the Mindlin-type model
based on the theory of continua is used for describing the microstructure. On the
other hand, it is shown how straight-forward numerical methods, like the finite vol-
ume methods, permit to describe the material properties for every discrete element
used in numerical simulation. Several phenomena like the existence of solitary waves,
the emergence of solitary wave trains, and waves in piece-wise nonlinear laminated
materials are briefly discussed and further problems indicated.
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1 Introduction

In principle, all materials behave non-linearly and linear models are appropri-
ate only within moderate loading and low frequency scales (cf. [1]). Nonlinear
phenomena in mechanics like shock waves, solitons, spectral changes, etc. have
currently gained wide attention. It is, however, clear that all the physical ef-
fects of the same order should be taken into account consistently, that is why
besides nonlinear effects, the effects of dispersion, dissipation, etc. should be
described within the framework of one model. In this paper, the attention is
focused on microstructural materials that are characterized by the existence
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of intrinsic space-scales in matter, like the lattice period, the size of a crys-
talline or a grain, the thickness of layers in laminates, the distance between
the microcracks, etc. These scales introduce a certain scale-dependence into
the governing equations that in terms of wave dynamics gives rise to disper-
sive effects. The classical Korteweg-de Vries (KdV) equation combines the
simplest nonlinear (quadratic non-linearity) and dispersive (cubic dispersion)
effects resulting in soliton formation (see, for example, [2]). In microstructured
materials, however, the situation is much more complicated and the character
of nonlinearity/ies and dispersion needs a careful analysis.

One of the important problems is to clarify dispersive effects due to the mi-
crostructure. The early studies by Achenbach et al [3] and Sun et al [4] were
devoted to the dynamic behaviour of laminated composites proposing the ef-
fective stiffness theory close to the Bloch wave expansion ([5]). Later, for the
same problem the important results on stopping bands of harmonic waves
were obtained by Ziegler [6], while Santosa and Symes [7] derived an effective
linear wave equation with a fourth-order term describing dispersion.

In more general terms, the starting point for describing a microstructure could
be either the discrete or the continuum approach. In the discrete approach the
volume elements of the matter are treated as point masses with a proposed
topological structure and some interaction between the discrete masses (see [8]
and references therein). This gives a good chance to model crystal lattices with
certain symmetries, vacancies, impurities, defects, walls, etc. The continuum
limits of the initial governing equations in the form of ODEs are widely used
in the analysis.

From the viewpoint of continua, the straight-forward modelling of microstruc-
tured solids leads to assigning all the physical properties to every volume ele-
ment dV in a solid, introducing the dependence on space coordinates. Then the
governing equations include automatically space-dependency, and the most ef-
fective way to solve the governing equations is numerical integration (see later
Sections 3.1 and 3.3).

Another way is to separate macro- and microstructure in continua. Then the
conservation laws for both structures should be either separately formulated
[9–11] or the microstructural quantities separately taken into account in one
set of conservation laws [12]. Here we follow the approach of Mindlin [9],
resulting in a very clear structure of the governing equations.

Our early studies were focused on the derivation of the governing equations and
dispersion analysis [13,14], and on the numerical simulation of wave distortion
[15,16], but also on the analysis of nonlinearities in microscale [17]. Here we
focus on explaining the effects of nonlinearities and dispersion using both
approaches mentioned above - (i) the straight-forward modelling and the finite
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volume method and (ii) the governing equations derived from the continuum
theory.

The paper is organized as follows. Section 2 describes the mathematical models
used for the analysis: the hierarchical Mindlin-type model and the straight-
forward numerical model used in the finite volume method. In Section 3 several
results are presented: first, the existence of solitary pulses in microstructured
solids is shown; second, the emergence of solitary waves is described on the ba-
sis of the full 1D equation with higher order dispersion due to nonlinearity and
on the basis of the finite volume method applied to waves in laminated com-
pound material; third, the importance of structural nonlinearities (mismatch
of impedance in laminated materials) is demonstrated. Section 4 includes con-
clusions and a brief discussion on the nature of dispersion.

2 Mathematical models

2.1 Hierarchical governing equations

As said above, we follow [9] and derive a 1D governing equation for longitudinal
deformation waves [13], distinguishing macrostress σ and microstress η and the
interactive force τ . The free energy function W is given in the following form:
W = W2 + W3, where W2 is the simplest quadratic function

W2 =
1

2
au2

x +
1

2
Bψ2 +

1

2
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x + Dψux (1)

and W3 includes nonlinearities on both the macro- and microlevel
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1

6
Nu3

x +
1

6
Mψ3
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Here u is the macrodisplacement, ψ is the microdeformation, a,B,C,D,N
and M are constants and right sub-indices denote differentiation. The basic
1D model for longitudinal waves is

ρutt = σx, Iψtt = ηx − τ, (3)

where ρ and I are macrodensity and microinertia, respectively. Then we use
the formulae

σ =
∂W

∂ux

, η =
∂W

∂ψx

, τ =
∂W

∂ψ
, (4)
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and introduce the dimensionless variables X = x/L, T = tc0/L, U = u/U0,
where U0 and L are certain constants (e.g. amplitude and wavelength of the
initial excitation) and also geometric parameters δ = l2/L2, ε = U0/L, where
l is the scale of microstructure. By using an asymptotic procedure (for details
see [13]), we arrive at the governing equation in the following form

UTT = bUXX +
µ

2

(
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)
X

+ δ (βUTT − γUXX)XX − δ3/2λ

2

(
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)
XX

, (5)

where b, µ, β, γ, λ are constants. Equation (5) actually involves hierarchically
two nonlinear wave operators

Lma = UTT − bUXX − µ

2

(
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)
X

and (6)

Lmi = δ

(
βUTT − γUXX − δ1/2λ

2
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)

XX

,

characteristic of macro- and microstructure, respectively (cf. [2]).

2.2 Straight-forward approach

This approach is extremely powerful for heterogeneous materials composed of
alternating layers of two different materials [18] but also for FGMs [15]. Again,
let us consider 1D longitudinal waves. Then in every element (i), the waves
are described by the governing equations

ρi(wi)t = (σi)x, (ui)t = (wi)x, wi = (ui)t, (7)

where ρi is the density of the element and there is no need to distinguish
between macro- and microstresses. The constitutive equation is taken in the
form

σi = ρic
2
i (ui)x(1 + Ai(ui)x), (8)

where ci is the longitudinal wave speed and Ai is a parameter of nonlinearity
(cf. [19]). For solving the system (7) with (8) and suitable initial and boundary
conditions, the finite volume algorithm is used [18,20].
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3 Results and discussion

3.1 Existence of solitary pulses

A well-known manifestation of the balance between nonlinear and dispersive
effects is the existence of solitary waves. The celebrated KdV-model exhibits
solitons, i.e., solitary waves which interact with each other elastically. Here the
balance is much more complicated because of nonlinearities on both macro-
and microlevel and complicated dispersion. For further analysis we rewrite Eq.
(5) in terms of v = UX

vtt = vxx +
µ

2
(v2)xx + δ(βvtt − γvxx)xx − δ3/2λ

2
(v2

x)xxx. (9)

Janno and Engelbrecht [21,22] have proved the existence of a solitary wave
solution to Eq. (9) provided

(
βc2

1 − γ

c2
1 − b

)3

>
4λ2

µ2
,

c2
1 − b

βc2
1 − γ

> 0, βc2
1 − γ 6= 0, c2

1 − b 6= 0, µ 6= 0, (10)

where c1 is the velocity of the solitary wave v(x, t) = v(x− c1t). If λ = 0, i.e.
the nonlinearity exists only on the macroscale (µ 6= 0), then the sech2-type
solitary wave exists. If however λ 6= 0 then the solitary wave is asymmetric,
i.e. the nonlinearity on the microscale affects the process. The direct solution
of Eq. (9) by the pseudospectral method (see [23,24]) shows clearly that a
solitary wave obeying the condition (10) propagates in the medium. The initial
condition is chosen as a soliton for Eq. (9) with λ = 0 : v = A sech2(x/∆), A =
0.6413, ∆ = 1.638. In the course of time, the solitary wave propagates with a
small change in its shape (Fig.1) that is obvious from the phase-plane (Fig.2)
which demonstrates clear asymmetry. The analytic conditions for the existence
of solitary waves modelled by Eq. (9) are given in [21].

3.2 Formation of solitary waves

The classical paper of Zabusky and Kruskal [25] demonstrated on the basis of
the KdV-equation the formation of a soliton train from a harmonic input. Here
the situation is much more complicated, but follows the same patterns. The
governing equation (9) has a main wave operator of the second order and that
describes both right- and left-going waves. Consequently, an initial excitation
should also generate both those waves. Figure 3 demonstrates the situation
for a solitary-type v(0, x) = A sech2(x/∆), A = 1.0, ∆ = 100. Two wave-trains
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Fig. 1. Propagation of a solitary wave described by Eq. (9) with
λ = 1.6681;µ = 1.45, b = 0.5, β = 1.32, γ = 0.2376, δ = 0.25.
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Fig. 2. The phase-plane of a solitary wave (data from Fig. 1).

form, propagating to the left and to the right. The similar situation for a rod,
where geometrical dispersion is taken into account is analyzed in [26]. But
be it an evolution equation [25] or a second order wave operator (Eq. (9)), if
dispersive and nonlinear effects are balanced, then solitary waves emerge.

As mentioned in Section 2.1, the dispersive effects are captured also by the
straight-forward approach, similarly to [7], where the Bloch expansion is sim-
plified to an effective medium model. We include also the nonlinearity as de-
scribed by Eq. (8) and use the finite-volume algorithm [15] for the numerical
simulation. The laminated material [18] is used made by alternating polycar-
bonate and aluminium layers. Each layer has a thickness 4∆x, where ∆x is
the computational grid size. The material parameters were for polycarbonate
ρ1 =1190 kg/m3, c1 =3914 m/s, A1 =0.8 and for aluminium ρ2 =2710 kg/m3,
c2 =5386 m/s, A1 =0.8 (see Eq. (7), (8)). The boundary condition (excitation)
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Fig. 3. Generation of two trains of solitons (Eq. 9) from an initial excitation. Here
λ = 2.0833;µ = 16.667, b = 0.775, β = 45.0405, γ = 7.5, δ = 0.25.

is given in terms of a velocity pulse with definite zeros at t = 0 and t = 240∆t:
v(0, t) = a(1+cos(π(t−120)/120), a = 0.45). The stress is normalized against
ρ2c

2
2 and the density against 4ρ2. The results are given in Figs. 4 a, b, c, where

the normalized density is shown by dashed lines. The train of solitary waves is
formed in due time exhibiting a similar distribution like in [25]. The question
whether these solitary waves are solitons or not needs special attention. This
was stressed already by LeVeque and Yong in [18] and [27] who focused their
attention to the similarity with the Toda lattice. As the solitary waves ex-
pand over several layers, their detailed shape differs from that of the classical
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Fig. 4. Formation of a train of solitons in a laminated material (explanation in the
text) a) t = 400, b) t = 2200, c) t = 4000. Solid line - normalized stress, dashed line
- normalized density.

sech2-type solution. What is actually important, is the similarity of solitary
wave generation processes in different cases. Here, however, dispersion occurs
because of the successive reflections at each interface as shown by LeVeque
and Yong [27]. The finite-volume algorithm [15] captures this effect by solving
the Riemann problem at each interface between discrete elements.
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3.3 Structural nonlinearities

In addition to the usual physical nonlinearities, the mismatch of constitutive
equations can also play a decisive role. In terms of acoustics, this effect can
be handled as an impedance mismatch [28]. Here we show how this situation
can be described in the case of a two-layered composite made of soft (polycar-
bonate) and hard (steel) alternating layers. An experiment by Zhuang et al
[29] is taken as the basis with corresponding material parameters and impact
conditions. We have used the finite-volume algorithm and used the constitu-
tive equation (8) with nonlinear parameter A = 0 for hard layers and A 6= 0
for soft layers. The results are extremely good - in Fig. 5 the stress history is
shown for the experiment [29] and for the numerical simulations in the case
where nonlinearity is taken into account and in the linear case. The specimen
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Fig. 5. Stress history for a laminated specimen of Zhuang et al [29] (explanation in
the text).

consists of 16 units of polycarbonate, each one 0.39 mm thick and of 16 units
of stainless steel, each one 0.19 mm thick. The boundary condition (the ve-
locity of a flyer) is given as a step-function with the amplitude w0 = 1043
m/s. The stress time histories correspond to the distance of 3.44 mm from the
impact face. The nonlinear parameter is A = 2.8 for polycarbonate and A = 0
for stainless steel. The nonlinear model captures all the essential features of
the experiment, while the linear model is far from that [16].
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4 Conclusions

Nonlinear effects influence considerably the propagation of deformation waves
in solids. The generation of higher order harmonics and the tendency to shock
wave formation are well-known phenomena in wave dynamics [2,30]. Especially
important are nonlinear effects together with other effects of the same or-
der. The corresponding mathematical models should describe the phenomenon
with the needed accuracy and then they could also be effectively used either
for the prediction of the characteristics of waves (direct problem) or for using
the measured characteristics for determining the properties of the material
(inverse problem). Here we focused our attention to microstructural materials
and the possible balance of nonlinear and dispersive effects. The Mindlin-type
model [9] has been developed in [13,14] so that it exhibits the needed accuracy
and demonstrates clearly the scaled structure of the material and the disper-
sive effects related to this structure. Due to the complexity of the governing
equation (cf. Eq. (9)), the analytical solutions at arbitrary initial and bound-
ary conditions are not known and therefore numerical simulations are needed.
The pseudospectral method ([24,31] and references therein) has proved to have
a good accuracy and it shows in addition the spectral changes explicitly. On
the other hand, the straight-forward numerical methods could be used which
permit to describe the needed material properties for every element of the
microstructural material. Here we stress the importance of the finite-volume
method [18,15].

Both approaches - derivation of the governing equations together with suitable
methods for their integration and straight-forward numerics - should be used in
parallel. The governing equations permit a full dispersion analysis [13] and the
analytical description of certain solutions [21], while the numerical simulation
has a wider area of applications. As shown in Section 3.2, the results describing
the emergence of solutions are similar, although here the aim was not to find
the best quantitative matching. What should be stressed is the possibility
to capture nonlinear piece-wise changing effects by the finite-volume method,
as demonstrated in Section 3.3 for the case of structural nonlinearities in
laminated composites.

It should be stressed that dispersive effects in general, and also in this paper,
can be of a different nature. The dispersion modelled by the free energy func-
tion (1) and yielding the governing equation (5) is physical. As a result, two
wave operators are present in the mathematical formulation and one of them
(6) introduces higher order derivatives responsible for dispersive effects into
the governing equation. In the modelling of layered material (see Sec. 2.2) the
dispersion is geometric, being due to the constitution of the solid in layers.
Geometric dispersion occurs also for longitudinal waves in rods [26], due to
the influence of the lateral surface of a rod. Finally we could determine the
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numerical dispersion related to the discreteness of the computational grid. In
this case one should clearly distinguish such an effect from the real dispersion.

Further attention in this field will be focused on 2D problems, multiscale
dispersion, quantitative comparison of various methods and solving the inverse
problems. The asymmetry of possible solitary waves in microstructural solids
might be a good chance to construct practical algorithms [21] for NDE.
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5 Figure captions

Fig. 1. Propagation of a solitary wave described by Eq. (9) with λ = 1.6681; µ =
1.45, b = 0.5, β = 1.32, γ = 0.2376, δ = 0.25.

Fig. 2. The phase-plane of a solitary wave (data from Fig. 1).

Fig. 3. Generation of two trains of solitons (Eq. 9) from an initial excitation.
Here λ = 2.0833; µ = 16.667, b = 0.775, β = 45.0405, γ = 7.5, δ = 0.25.

Fig. 4. Formation of a train of solitons in a laminated material (explanation
in the text) a) t = 400, b) t = 2200, c) t = 4000. Solid line - normalized stress,
dashed line - normalized density.

Fig. 5. Stress history for a laminated specimen (explanation in the text).
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