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On solitons in microstructured solids and granular materials
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Abstract

The problems under consideration are related to wave propagation in nonlinear dispersive media, characterised
by higher-order nonlinear and higher-order dispersive effects. Particularly two problems — wave propagation in
dilatant granular materials and wave propagation in shape-memory alloys — are studied. Model equations are KdV-
like evolution equations in both cases. The types of solutions are determined and analysed. It has been found that
waves in granular materials are composed by two concurrent ensembles of solitary waves and there exist a threshold
parameter value governing the behaviour of stable waves in alloy type materials.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Waves in microstructured solids are clearly affected by dispersion due to the internal structure of the
material. For high-intensity excitations, nonlinearity should also be taken into account. It is widely known
that nonlinear and dispersive effects may be balanced and then solitary waves and solitons may emerge.
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The simplest case of quadratic nonlinearity and cubic dispersion is modelled by the celebrated Korteweg–
deVries (KdV) equation[1]. Since the discovery of solitons, many studies have been devoted to various
generalisations of this simple but rich model.

Indeed, it has been shown that the higher-order dispersive terms enrich the physical picture[2–5]. On
the other hand, the existence of higher-order nonlinearit-y/ies may still be balanced by dispersive effects.
The consistent derivation of mathematical models, however restricts the simple summing-up the higher-
order terms. In[5] it has been shown how the lattice theory can be used for the derivation of wave models.
In this case the discrete terms are derived into the Taylor series giving rise to higher-order derivatives
in governing equations. Starting from the theory of continua, the balance laws are formulated separately
for macro- and microstructure[6,7]. Then the higher-order terms depend on the structure of the energy
function and interaction forces between the structural elements. Due to the importance of microstructured
materials in contemporary technology, the studies of dynamical processes in such materials become also
of importance[8–11].

Here we restrict ourselves to the analysis of the physical effects due to the presence of the fifth order
dispersive term and higher-order nonlinearities. We focus on waves in dilatant granular materials[12–14]
and in shape-memory alloys[3,4,15,16]. In the first case, the character of grains is directly taken into
account, and the result is a hierarchical KdV equation with two KdV operators. In the second case the
governing equation is derived on the basis of lattice theory. Despite of a difference of models, the similarity
is striking — the cubic and the fifth order dispersive terms in both cases and complicated nonlinearity
to balance them. If the inertia of grains is neglected then the dispersive terms of both models coincide.
In this paper the attention is paid to understand the mechanisms of the emergence of solitary waves and
to the characterisation of possible types of waves emerging from the balance or imbalance of dispersive
and nonlinear effects.

The paper is organised as follows. In Section2the mathematical models are described and the problems
under consideration and the methods are introduced. Results are presented and discussed in Section3
while in Section4 concluding remarks are given.

2. The problem, mathematical models and methods

2.1. Wave propagation in dilatant granular materials

One-dimensional motion of suspension of particles (grains) in a compressible fluid is considered. Fluid
density is assumed to be small compared to the particle density and rotation of particles is neglected.
Corresponding equations of motion are derived by Giovine and Oliveri[12]. In the case of incompressible
grains equations of motion result in a KdV equation

ut + uux + duxxx = 0 (1)

whered is the dispersion parameter. However, the case of compressible grains results in a hierarchical
KdV (HKdV) equation

ut + uux + α1uxxx + β(ut + uux + α2uxxx)xx = 0 (2)

Hereα1 andα2 are dispersion parameters for macro- and microlevel, respectively andβ is the microstruc-
ture parameter that includes the ratio of wavelength to the grain size. The parameterβ can be negative
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(in the case of high kinetic energy of particles) as well as positive (in the case of small kinetic energy of
particles)[12]. Eq.(2) is clearly hierarchical in the Whitham sense[17] — if |β| → 0, the influence of mi-
crostructure can be neglected and the wave “feels” only the macrostructure and, vice versa, if 1/|β| → 0
only the influence of the microstructure is “felt” by the wave. For Eq.(2) the limit caseβ = 0 reveals the
standard KdV equation with standard soliton solutions.

Our main goal is to analyse and characterise the time-space behaviour of the solution in three-
dimensional space of material parametersα1, α2, β. In this reason the HKdV equation is integrated
numerically under harmonic initial conditions

u(x, 0) = sinx, x ∈ [0 2π] (3)

and periodic boundary conditions

u(x + 2nπ, t) = u(x, t), n = ±1, ±2, . . . (4)

2.2. Wave propagation in microstructured solids

We are particularly interested in the wave propagation in shape-memory alloys. Such alloys (Fe–C,
Ni–Ti, Fe–Ni–Cr, for example) are characterised by austenite-martenste phase transitions. Corresponding
model equations, proposed by G.A. Maugin, include higher-order nonlinear and higher-order dispersion
terms and can be of Boussinesq[4,5] or KdV type[15,16].

In the present paper the KdV type model equation[15,16]

ut + [P(u)]x + duxxx + buxxxxx = 0, P(u) = −0.5u2 + 0.25u4 (5)

is used. Here the nonlinearity is described by the quartic elastic potential andd andb are the third- and
the fifth-order dispersion parameters, respectively. The higher-order KdV-like Eq.(5) is shortly referred
as KdV435 below. The character of dispersion depends on the signs of dispersion parametersd andb. If
db > 0 then one has normal dispersion. However, ifdb < 0 then one has so called mixed dispersion case,
i.e., the character of dispersion is normal for some values of wavenumber and anomalous for anothers[16].
Numerical experiments with the harmonic initial conditions(3) have shown that the KdV435 equation

Fig. 1. KdV ensemble of solitons (time-slice plot over two 2π periods in space,α1 = 0.05,α2 = −0.03,β = 0.0111, 0< t < 20).
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Fig. 2. KdV ensemble and suppressed EA ensemble (time-slice plot over two 2π periods in space,α1 = 0.05, α2 = 0.052,
β = 0.0111, 0< t < 20).

can have soliton type solutions in the case of normal as well as mixed dispersion[15,16,18]. In the present
paper the normal dispersion case (d > 0 andb < 0) is studied and logarithmic dispersion parameters

dl = − logd and bl = − log |b| (6)

are used in parallel tod andb.
The KdV435 equation is integrated numerically under localised initial conditions

u(x, 0) = A sech2
(x − ϑ0)

�
, (7)

Fig. 3. KdV ensemble and amplified EA ensemble (time-slice plot over two 2π periods in space,α1 = 0.05, α2 = 0.0725,
β = 0.0111, 0< t < 20).
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Fig. 4. KdV ensemble and dominating EA ensemble (time-slice plot over two 2π periods in space,α1 = 0.05, α2 = 0.07,
β = 0.0111, 0< t < 20).

and periodic boundary conditions

u(x + 2nmπ, t) = u(x, t), n = ±1, ±2, m > 2 (8)

HereA is the amplitude of the localised initial wave,ϑ0 the initial phase-shift and� = √
12d/A is

referred to as the width of the soliton in[1]. We are interested whether or not the initial localised wave(7)
which is the solution of the KdV equation(1) can propagate with a constant speed, shape and amplitude
in media, described by the KdV435 Eq.(5).

2.3. Numerical technique

For numerical solution of model equations the discrete Fourier transform (DFT) based pseudospectral
methods[19] are used, i.e., space derivatives are approximated making use of DFT and for integration with

Table 1
The number of solitary wavesN in the dominating EA ensemble against the ratioα2/α1 for β = 0.0111 andβ = 0.0055

α2/α1 N

β = 0.0111
1.11 9
1.40 8
1.80 7
2.52 6
3.47 5

β = 0.0055
0.93 14
1.07 13
1.27 12
1.50 11
1.81 10
2.26 9
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respect to time standard ODE solvers (Runge–Kutta–Fehlberg or implicit Adams methods, for example)
are used. For the DFT standard FFT or FFTW algorithms are applied. For analyses of numerical results
discrete spectral analysis is applied, i.e., in order to characterise the space-time behaviour of the solution
Fourier transform related spectral quantities are used[20].

3. Results and discussion

3.1. HKdV equation

Numerical solutions for the HKdV equation(2) are found over wide range of material parametersβ, α1

andα2. Possible solution types and subtypes are introduced and analysed in[21]. In the case of thefirst
solution typea train of interacting solitons forms like in the case of the KdV equation. Solution of this
type is called a KdV ensemble (Fig. 1). In the case of thesecond solution typethe KdV ensemble and an
ensemble of nearly equal amplitude solitary waves (EA ensemble, shortly) emerge simultaneously. The
EA ensemble can be suppressed (Fig. 2) or amplified (Fig. 3). In some cases the rate of the amplification
is so high that the EA ensemble starts to dominate over the KdV ensemble (Fig. 4). This is the case we
focus at here. Solitary waves in the EA ensemble propagate nearly with the same speed and there are
no interactions between themselves — solitary waves from the EA ensemble interact only with solitons
from the KdV ensemble. Through these interactions solitary waves from the EA ensemble conserve their
speed, shape and amplitude, i.e., these interactions are elastic and one can say that two solitonic structures
have formed simultaneously. The solutions of the HKdV equation(2) have symmetry

u(x, t, α1, α2) = −u(−x, t, −α1, −α2) (9)

in theα1 − α2 plane and therefore one can speak about ensembles of positive as well as negative solitons
in the case of the present equation.

We concentrate now our attention to the amplification and domination of the EA ensemble. This
phenomenon can take place forβ > 0 andα1α2 > 0. The domination of the EA ensemble and the

Fig. 5. The number of solitary waves in the dominating EA ensemble and corresponding straight linesα2/α1 = constant in the
α1 − α2 plane: (a)β = 0.0111; (b)β = 0.0055. The numbers of solitary waves are indicated at each line.
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number of solitary waves in the EA ensemble is determined by the ratio of dispersion parametersα2/α1.
The domination of the EA ensemble can take place only in the very narrow neighbourhood of certain
straight linesα2/α1 = constant. InTable 1the characteristic values of the ratioα2/α1, and corresponding
number of solitary wavesN in the EA ensemble are presented while inFig. 5straight lines are shown for
β = 0.0111 andβ = 0.0055. InFig. 6 the waveprofile minima mint,x u(x, t) and maxima maxt,x u(x, t)
are plotted againstα2 for fixed value ofα1 = 0.05 for β = 0.0111 (Fig. 6a) andβ = 0.0055 (Fig. 6b).
These results indicate the emergence of resonant solitary waves at certain values ofα2. These values
depend on the value ofβ.

It is clear (seeFig. 6andTable 1) that if the EA ensemble is dominating then waveprofiles are stretched
in the positive as well as in the negative direction. The most distinctive domination within our range of
parameters corresponds to the number of solitary wavesN = 9 (α2/α1 = 1.11) forβ = 0.0111 andN =
13 (α2/α1 = 1.07) forβ = 0.0055. In very simple words the phenomenon of the EA ensemble domination
can be described as a certain resonance phenomenon — if we fix the value ofα1 (for exampleα1 = 0.05
in Figs. 5 and 6) then for certain values ofα2 the EA ensemble is dominating and for certain values it

Fig. 6. Waveprofile minima and maxima against the dispersion parameterα2: (a)β = 0.0111,α1 = 0.05 andα2 = {0 : 0.0005 :
0.3595}; (b) β = 0.0055,α1 = 0.05 andα2 = {0.02 : 0.0005 : 0.1830}.
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is suppressed. Furthermore, during one amplification–suppression cycle (α2 is assumed to increase), the
EA ensemble looses the most right solitary wave (seeFig. 3 where the highest KdV ensemble soliton
has a double peak). It could be conjectured that the resonance is caused by the feedback between two
KdV-systems resulting in the amplification of an EA ensemble. Despite of similarity to cnoidal waves,
the EA ensemble is a different structure with clearly dominating spectral amplitude[21].

3.2. KdV435 equation

Making use of results of numerous numerical experiments with different values of logarithmic disper-
sion parameters and amplitude of the initial localised wave, two main solution types can be distinguished.
In what follows, the typical examples are presented fordl = 0.8 andbl = 2.0 below.

In the case ofthe first typethe initial localised wave decays to a wave-train.Figs. 7a and 8ademonstrate
the behaviour of waveprofile minimaumin(t) = minx u(x, t) and maximaumax(t) = maxx u(x, t) against

Fig. 7. Solution type 1a (amplitude of the initial localised waveA = 1.5 < A∗): (a) waveprofile minima and maxima against
time; (b) spectral amplitudesS1, . . . , S4 against time.
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Fig. 8. Solution type 1b (amplitude of the initial localised waveA = 1.75 < A∗): (a) waveprofile minima and maxima against
time; (b) spectral amplitudesS1, . . . , S4 against time.

time. It is clear that in these cases the initial excitation 0< u ≤ A is completely destroyed and the
waveprofile is stretched in the negative as well as in the positive direction. InFig. 8aone can find that the
behaviour of quantitiesumax(t) andumin(t) is (quasi)periodic in time, but inFig. 7aone cannot detect such
a periodicity. This phenomenon is verified inFigs. 7b and 8bby time-dependences of spectral amplitudes
Sω = 2|U(ω, t)|/n, ω = 1, . . . , n/2, (the quantityU(ω, t) is the DFT of the solutionu(x, t)). We refer
the nonperiodic case as a solution type 1a and the periodic case — as 1b.

Time-slice plot inFig. 9ademonstrates that for a certain value of the amplitudeA, an initial wave
really can propagate without essential changes in the amplitude, shape and speed. In this case quantities
umax(t) andumin(t) are not absolutely constant, but oscillate and deviate from initial valuesumax(0) = A

andumin(0) = 0 by a small extent (seeFig. 9bwhere corresponding time dependences are presented).
This case is calledthe second typesolution and it can be realised if the amplitude of the initial waveA is
higher than a certain critical valueA∗. In the case considered in the present paper, i.e. fordl = 0.8
and bl = 2.0 the critical value 1.86 < A∗ < 1.87, i.e., forA = 1.86 the initial solitary wave is de-
stroyed, but forA = 1.87 it propagates with nearly constant amplitude, shape and speed. It means
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Fig. 9. Solution type 2 (amplitude of the initial localised waveA = 1.88 > A∗): (a) time-slice plot over two space periods; (b)
waveprofile minima and maxima against time.

that the balance between nonlinearity and dispersion can occur only up from the certain initial energy
level.

4. Concluding remarks

The wave phenomena in microstructured materials are strongly influenced by dispersive and nonlinear
effects. In principle, both effects are more complicated than those described by the standard KdV equa-
tion. Here two possible generalisations are studied — (i) the HKdV equation built up by two different
KdV equations and (ii) the KdV435 equation involving also the quartic nonlinearity and the fifth-order
dispersion. Both generalisations include some similar terms (see Section1) that is the reason to analyse
them together. The formation of solitary wave structures from an harmonic input and the stability of
localised waves are the main physical phenomena to understand. Based on numerical analysis the main
results of this study are described below.
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4.1. HKdV equation and harmonic input

The wave propagation in dilatant granular materials is modelled by the HKdV equation(2). In the case
of harmonic initial conditions two solitonic structures — a KdV ensemble and an EA ensemble — can
emerge simultaneously[21]. Furthermore, as shown here, for certain combination of values of parameters
β, α1 andα2, the EA ensemble can be amplified or suppressed. In some cases the EA ensemble starts to
dominate over the KdV ensemble. In the present paper the main attention was paid to the amplification–
suppression phenomenon of the EA ensemble. Making use of results of many numerical experiments
including casesβ > 0.0111 andβ < 0.0055, the following can be concluded:

• The smaller the value of the parameterβ the higher the maximum number of solitary waves in the
dominating EA ensemble, the higher their maximum amplitude and the wider the region where the
domination can take place. However, simulations in theβ = 0 limit result in standard KdV-soliton
train.

• In all cases, however, the higher the value ofα2 (for fixedα1) the smaller the number of solitary waves
in the EA ensemble and the less distinctive the domination.

• The number of solitary waves in the EA ensemble can be properly determined only if the EA ensemble
is amplified to a certain extent — otherwise some EA solitary waves are hidden under the highest
soliton of the KdV ensemble.

• A resonance phenomenon for EA ensembles can occur in certain domains in the three-dimensional
space of parametersβ, α1 andα2 (seeFig. 6).

4.2. KdV435 equation and localised input

The KdV-like evolution Eq.(5) including higher-order nonlinear and dispersive terms is used to model
the wave propagation in microstructured solids (shape-memory alloys particularly). In the present paper,
Eq.(5) was solved numerically under initial conditions that correspond to the one soliton solution of the
KdV equation(1). In addition to our earlier results related to harmonic excitations[15,16,18]one can
conclude the following:

• If the amplitude of the initial localised wave is higher than a certain critical value then it can travel
with a constant speed and without significant changes in its amplitude.

• If the amplitude is lower than the critical value then the initial localised wave decays to a wave-train.
In some cases the behaviour of the wave-train can be (quasi)periodic in time and in these cases the
phenomena of recurrence and superrecurrence can also be evident.

• As a rule, the amplitude of the initial localised wave has a “ideal” value near the critical one. In this
case the amplitude of the solitary wave oscillates during the propagation only by very small extent and
the radiating tail behind the solitary wave is practically undetectable.

• The higher the amplitudeA > A∗ the higher and narrower are the solitary waves, the faster they are
going to the right, the more distinctive is the tail and the more oscillations of their amplitude can be
seen. This is an important result showing the difference from the standard KdV soliton.

Several questions in this paper remain open and research will be continued.
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