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Université Pierre et Marie Curie
UMR 7607, Tour 66, 4 Place Jussieu, Case 162
75252, Paris Cédex 05, France

1. Introduction

A number of continual models for describing the dynamics of phase bound-
aries has been developed in order to understand evolving phase transitions
(cf., for example, [1]). All these models take the basic balance laws of con-
tinuum mechanics as a starting point. However, the propagation speed of
phase-transition fronts is not completely determined by the balance of mo-
mentum in the dynamic problems involving phase boundaries. As a result,
an additional constitutive criterion is needed for the determination of the
dynamics of phase boundaries. In the sharp-interface theory, phase bound-
aries are treated as discontinuity surfaces of zero thickness. The canonical
formalism of continuum mechanics with a full exploitation of the balance of
so called pseudo- or canonical momentum leads to the balance of ”material”
forces at the phase-transition front. The surface ”balance” equation plays
an essential role in the description of phase-transition front propagation.
However, in all the theories, the constitutive relation for free energy is as-
sumed to be able to describe the states in both sides of the phase-transition
front simultaneously.



Here we consider a simpler situation, when each phase has its own pre-
scribed classical constitutive equation for the thermoelastic free energy. In
this case, the driving force and the entropy flux should be computed by
means of the surface ”balance” equation. However, for the computation of
the phase-transition front propagation, the equations are not closed, be-
cause a criterion of the progress of the front is additionally needed. In
this paper, a thermodynamic criterion is proposed, based on the stabil-
ity conditions for complex thermodynamic systems. The conditions of the
stability are derived and expressed in terms of contact quantities, which
are introduced in the framework of the thermodynamics of discrete sys-
tems in order to describe the nonequilibrium states of discrete elements.
The contact quantities at the phase boundary are determined by means
of the above-mentioned balance of material forces at the interface and
the jump relation for the entropy. As a result, an efficient and robust
numerical method capable of solving dynamical phase transition prob-
lems is developed. As a first attempt, the numerical simulation of stress-
induced austenitic-martensitic phase-transition front propagation in the
one-dimensional case is performed. The analysis of the two-dimensional
case is in progress.

2. Balance laws for linear thermoelasticity

We consider both two phases of the material as thermoelastic heat conduc-
tors. If geometrical nonlinearities are neglected, then the main bulk equa-
tions of inhomogeneous linear isotropic thermoelasticity (in the absence of
body forces) can be written as the following three equations:
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of which the second one is none other than the time derivative of the
Duhamel-Neumann thermoelastic constitutive equation [2]. Here t is time,
xj are spatial coordinates, vi are components of the velocity vector, σij is
the Cauchy stress tensor, ρ0 is the density, θ is temperature, C(x) = ρ0c,
c is the specific heat at constant stress, k is the thermal conductivity. The
dilatation coefficient α is related to the thermoelastic coefficient m, and the
Lamé coefficients λ and µ by m = −α(3λ + 2µ). The indicated explicit de-
pendence on the point x means that the body is materially inhomogeneous
in general.



The system of equations (1)-(3) is a system of hyperbolic conservation
laws with source terms in a form that is suitable for a numerical solu-
tion. Well developed numerical methods exist for solving of this system of
equations including the case of inhomogeneous media like, for example, the
wave-propagation algorithm [3],[4]. However, in the case of moving phase
transition fronts some additional considerations are needed.

3. Jump relations

In order to consider the possible irreversible transformation of a phase into
another one, the separation between the two phases is idealized as a sharp,
discontinuity surface S across which some of the fields suffer finite disconti-
nuity jumps. It is assumed that the phase transition fronts are homothermal
(no jump in temperature) and coherent (they present no defects such as
dislocations). Thus, we have the following continuity conditions [5]:

[V] = 0, [θ] = 0 at S. (4)

Here [A] denotes the jump of a discontinuous field A across S.
The material velocity V is defined by means of the inverse mapping X =

χ−1(x, t), where X denotes the material points. Jump relations associated
with the conservation laws in the bulk are formulated according to the
theory of weak solutions of hyperbolic systems [6]-[7]

ṼN [ρ0vi] + Nj [σij ] = 0, (5)
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where Ṽ is the material velocity of the geometrical points of S, ṼN is the
normal speed of the points of S, Ni are components of the unit normal
to S, S is the entropy per unit volume, and σS is the entropy production
at the interface. As it was shown in [5]-[7], the entropy production can be
expressed in terms of the so-called “material” driving force fS

fS ṼN = θSσS ≥ 0, (7)

where θS is the temperature at S. In addition, the balance of “material”
forces at the interface between phases should be satisfied [5]-[9]. In the
considered case, this can be specified to the form

fS = −[W ]+ < σij > [εij ] , (8)

where W is the free energy per unit volume and < A > denotes the mean
value of a discontinuous field A. The surface “balance” equation (8) fol-
lows from the balance law for pseudomomentum [5]-[7] and generalizes the



equilibrium conditions at the phase transition front [10] to the dynamical
case. Usually, a relation of constitutive type between the values of driving
force and material velocity at the front should be written for the compu-
tation of the phase transition. Instead of that we use a thermodynamic
considerations based on the thermodynamics of discrete systems [11].

4. Thermodynamic consistency conditions for thermoelastic me-
dia

The thermodynamic consistency conditions for simple thermodynamic sys-
tems are expressed in terms of internal energy [12][(
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in the homogeneous and heterogeneous case, respectively. Here Ê is the
internal energy, V is volume, and Eint is the so-called interaction energy,
which appears in the description of the interaction of non-equilibrium dis-
crete elements [12]. It should be noted that the value of Êint is undetermined
yet. In the thermoelastic case, the thermodynamic derivatives which should
be exploited instead of
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Here E is the internal energy per unit volume.
For extending the concepts of the thermodynamics of discrete systems to

the thermoelastic case, we divide the body into a finite number of identical
elements. The state of each element is then identified with the thermody-
namic state of a discrete system associated with that element; each element
being assumed to be in local equilibrium. In thermoelasticity, in addition
to the contact temperature Θ [11], which governs heat exchange, we must
define a contact dynamic stress tensor Σij since the state space includes
the deformation. We have thus

∂εij

∂t
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Here σ∗ij is the Cauchy stress tensor in the environment.
It is supposed that the introduced contact quantities are connected
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In fact, the latter two equations are the relations of a constitutive type
for the introduced contact quantities. It should be noted that the interaction
entropy Sint is still undetermined yet. Just these conditions will be applied
to determine the values of the contact quantities at the phase boundary.

5. Contact quantities at the phase boundary

Suppose that the interface between two thermoelastic phases is placed be-
tween elements numbered (p− 1 q) and (pq). We propose to apply the het-
erogeneous consistency conditions for the calculation of the contact stresses
at the phase boundary. In the two-dimensional case, we can rewrite the het-
erogeneous consistency conditions in the form

[σij ] + θS

[(
∂Sint

∂εij

)
σ
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+ (Σl

ij)pq − (Σr
ij)p−1 q = 0. (13)

Further, we suppose that the jump of the entropy of interaction is equal to
the jump of entropy at the phase boundary

[Sint] = [S]. (14)

It is obvious that for zero entropy of interaction the heterogeneous consis-
tency conditions can be reduced to those in homogeneous case and, there-
fore, no change is needed. However, the jump of entropy is nonzero at the
phase boundary if phase transition occurs.

For the computation of the jump of entropy at the phase boundary we
will exploit the jump relation corresponding to the balance of the entropy
(6). In the two-dimensional homothermal case, we have

[S] = fS/θS , (15)

where the driving force is determined by the balance of “material”forces
(8) with the free energy in the two-dimensional thermoelastic case

W =
1
2
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)
. (16)

Thus, the jump of the entropy of interaction is determined completely.
Remaining relations follow from the coherency conditions for the material
velocity (4). Obtained conditions form a linear system of equations which
can be solved exactly, and we can update the state of the elements adjacent
to the phase boundary by means of the wave-propagation algorithm [12].
It should be noted that the proposed new procedure should be applied at
the phase boundary instead of standard one only after the initiation of the



phase transition process. The material velocity at the phase boundary can
be determined by means of jump relation for linear momentum (5). At last,
the direction of the front propagation is determined by the positivity of the
entropy production

σS =
fS ṼN

θS
≥ 0. (17)

Now all bulk quantities can be computed and the driving force and the ma-
terial velocity at the phase boundary determined. However, these quantities
manifest themselves only if the phase transition takes place.

6. A thermodynamic initiation criterion for the stress-induced
phase transition

We propose to expect the initiation of the stress-induced phase transition
if both heterogeneous and homogeneous consistency conditions are fulfilled
at the phase boundary simultaneously. Let the heterogeneous consistency
condition (13) be fulfilled. Then the homogeneous consistency condition
can be represented at the phase boundary as follows
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It should be noted that the combined consistency condition (18) must
be fulfilled at least for one component of the stress tensor, because only
one additional condition to be satisfied in order to determine the initiation
of the phase transition. In particular, for the shear component of the stress
tensor σ12 we have a simple relation of continuity of the shear stress at the
phase boundary

[σ12] = 0. (19)

The expression (19) is inconvenient for the determination of the initiation
of the phase transition, because it is fulfilled even in the absence of phase
transitions and any other perturbations. Just therefore the combined con-
sistency condition (18) for the normal components of stress tensor should
be also checked. The combined consistency condition (18) for the normal
component of the stress tensor σ11 leads to the following expression for the
driving force fS :
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Therefore, the proposed criterion for the initiation of the stress-induced
phase transition is the following:

|fS | ≥ |fcritical|. (21)

A similar condition can be obtained for the second normal component of
the stress tensor.

7. Numerical results for stress-induced phase transition

As an example, an one-dimensional martensite-austenite phase-transition
front propagation is simulated in a thermoelastic medium. The physical
properties of the material correspond to the NiTi alloy [14].
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Figure 1. Interaction of shear wave with phase transition front.

It is supposed that the medium contains both martensitic and austenitic
parts, which coexist at the temperature θS = θ = 300K. An isothermal
loading of shear stress is applied at the left boundary of the martensitic
region. The form of the hump is shown in the left part of Fig. 1. The
location of the phase boundary (initially x = 600) is marked by a vertical
line.

If the amplitude of loading is sufficiently large to overcome the criti-
cal value of the driving force, we have the interaction of the shear wave
with the phase-transition front (Fig. 1). As one can see, the value of the



stress remains constant after the interaction, while the location of the phase
boundary is displaced into the austenitic region.

It should be noted that the displacement of the front location depends
nonlinearly on the amplitude of the loading, because of the nonlinearity in
the computation of the driving force.
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