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MICROSTRUCTURE DESCRIBED BY HIERARCHICAL
INTERNAL VARIABLES

Abstract. In this paper a clear distinction is made between the diffeseales and
the different processes in the microstructure which infbeetne dynamics at the
macrolevel. In the first case the governing equation for wae@agation is repre-
sented by a hierarchy of waves. In the second case it has heamshow useful
the concept of internal variables is. The different proess=n be best described
by a hierarchy of internal variables. An example of cardiacsahe contraction is
briefly described, demonstrating the dependence of theeasitiess on sliding the
molecules and ion concentration involving the correspagditernal variables.

1. Introduction

Continuum mechanics is usually based on macroscopic ctsiaad quantities, such as energy
density, stress, strain, etc. However, materials (whatthr origin is) have usually a mi-
crostructure because of inhomogeneities, pores, embdaged, reinforcements, etc.. This list
can be prolonged but one is clear - the description of thewetiaof many materials should take
into account both the macroscopic and microscopic praggenticcuring at different length scales
and involving different physical effects. Within the frawmark of continuum mechanics, such a
behaviour is best described by distinguishing macro steeand microstresses with interactive
microforces ([1], [2]). We feel however, that for materialth complicated properties indicated
above, one should start distinguishing clearly the obd#evand internal variables ([10], [13]).
Although the formalism of internal variables is well knowd @], [13]), for the clarity sake we
repeat here some basic concepts.

The observable variables are the usual macroscopic fieltitjga such as elastic strain, for
example. These variables are governed by conservationdad/possess inertia. The internal
structure of the material (body, tissue, composite, eggupposed to be described by internal
variables which are not observable and do not possessaneftiey should compensate our
lack of knowledge of the precise description of the micnastire. The formalism of internal
variables involves constructing of a dissipation potérifidn parallel to the Lagrangiag for the
observable variable. However, the governing equationstefmal variables are kinetic equations
(not hyperbolic) — see [10], [13].

The idea of using internal variables for describing dynainprocesses in microstructured
materials has earlier been presented in [12], [4]. The prablbecome more complicated when
either the scales or possible processes in materials &eesdif and form a certain hierarchy. This
brings us directly to the idea of hierarchical internal ates that certainly need generalization
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of the existing formalism. An example and main concepts efdrichical internal variables are
given in [6], here a certain systematic approach is predeptwing by an example.

In Section 2 basic ideas of modelling are briefly describdte description involves contin-
uum mechanics, internal variables and evolution equati@tisneeded for further presentation.
More detailed description can, for example, be found in Bction 3 presents the central ide-
ology of this paper. It makes clear distinction betweenedéht scales and different processes in
the microstructure. In the first case the result is a wavaltéy, in the second case - a hierarchy
of internal variables. In Section 4 an example is preserlledirating the hierarchical internal
variables. The case study is based on the contraction ofitliéac muscle depending on the cell
energetics. Last Section 5 includes conclusions and opsigms.

2. Basic modelling

2.1. Continuum mechanics

To be brief, we refer to [1], [2] for basic concepts for midrostured solids. For a bod§ C 03
with microstructure, an added fiedddescribes the mechanical characteristics of the microstru
ture. The stress fields can be introduced after the definitidhe expended power in arbitrary
processes [9], including a macroscopic (gross structureys and force, a microscopic (fine
structure) stress and force, and an interaction force legtwhee macro- and microstructures. In
[2], this approach has been extended to include differentastructures at their characteristic
scales. Then for arbitrary regidry in 93 with outward unit normaim we have for the actual
powerIlg(WV):

I‘IO(W)=/ Tgm-vda—f—/ fg - vdv + Mmicro,1OV).
oW w

Herev is the velocity,Tq is the macroscopic stress, afyis the macroscopic body force.
Note that indexing has here and below been changed compitref2jy The fieldTmjcro,1 V)
is the power expended by the microstructure. Further, tiierdhce from the general theory [9]
involves a sequence of microscopic procesiigk = 2, 3, .... Now, we can magnify a small
region of W iteratively by magnificationzk. At the first stage

Mmicro,a W) = ./d Tim-vida+ /W f1-v1dv + Mmicro,2(W).

1 1

wherev, = Av + dq andT1 is the microscopic stress at this level. Further on,
Mmicro2W) = / Tom-vpda+ / f2 - v2dv + Mmicro,3(W),
AWy Wo

etc. (for details, see [2]. The general balance laws can rE@ilyebe rewritten in the referential
form.

2.2. Internal variables

The formalism of internal variables is presented in [L0B][1Here we need point out just
essentials for further analysis in Section 3. The behavwidar system, i.e. dynamic state of a
body involves description of observable state variaklés.g. elastic strain and particle velocity)
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and a certain number of internal variablesThe dependent variable(s) (e.g. the stress) must be
simultaneously a function of both

o=o0(x,a)

which must be complemented by a governing equatiom for
1) a=f(x,o)+9x. o).
It is assumed that the strairis split up in an elastic paet® and an "anelastic” pagtP:
€ = Ee + € p.
The free energy functiotf is assumed to be
v =9 T;a Va)

whereT is temperature. The equations of motion are then easilyetbriln addition, we need
to concretize Eq (1). For that, a dissipation poteriftas postulated

D ="D(o,é&, e T, o, Vo) > 0
possessing certain properties [10]. Then the governindlEfp( « is derived as

1) oD
by , 0D

— =0.
Sa o

As a rule, this equation is not hyperbolic.

2.3. Mathematical models

It is clear that mathematical models involving both obsklwand internal variables are of the
mixed (e.g. inertial-diffusive [10]) type. The general édefor asymptotic analysis of such
systems are presented in [4], [5]. To get an idea, the simp@<ase could be described. Let
an n-vectorU be the vector of the observable variables, a scalarthe internal variable and

X1 = X. Then the governing system is of the following form

au au 32U
2 | — 4+ Aj— +eBy3—— +h.ot = H(U,
) ot T Mgx TP T U, w)
w Bzw
3 4 di;— +hot = pU,
3 ot Thuss t p(U, w)

wherel is a unit matrix, A1 (U, X), B11(U, X) are the matrices of parametet$(U, w) and
p(U, w) are the coupling vector and function, respectively, is a constant and a small pa-
rameter while h.o.t stands for higher order terms (dexiea)i.

It is proposed [4], [5] to use conventional asymptotic apgtofor deriving the evolution
equation(s) for system (2), (3) (see [3]).
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3. Types of models

Depending on the different length and time scales, the agtiogoverning equations derived
along the ideas of Section 2, may have different characteveitheless, it is possible to distin-
guish between the two types of governing equations.

Thefirst typeis based on structural hierarchy of a material (body) arahgtdependence on
length scales within the material and of the excitation Wwlsice the leading factors. The simplest
example is just a material where macro- and microstructte@ascribed by their own balance
laws [1], [9]. It means that the dynamic behaviour of the ¢ibmsnts is basically similar and
differs in parameters.

Thesecond typés based on process hierarchy in a material (body) wherer@miugalevels
various dynamical processes are of importance, all infimgnthe macrobehaviour. This is
an example of the cardiac muscle [6] and characterized lyesttérnal variables that form a
hierarchy.

Below both types are briefly characterized.

3.1. Structural hierarchy and hierarchy of waves.

Many materials possess microstructure at various scalesh®other hand, it is widely known
that dissipation and dispersion is different for variowejfrency scales. Hence, given the initial
excitation with a fixed frequency (wavelength), the respookthe material depends actually
on a certain underlying microstructure which is respomsfbl the governing physical effects.
Actually, this could be just a case of macro- and microstmgtor then a case of several mi-
crostructures. The outcome, i.e. the governing equationldhcertainly reflect this possible
choice emphasized by certain input-dependent paramegms. could intuitively address the
problem asking a question, which material properties anermoportant: those characteristic to
the macrostructure or those characteristic to the miarotire of a certain level. It is clear that
a single governing equation should have a certain hierazoifyedded into it.

Wave hierarchies are analysed by Whitham [15], showingigratchy of just two orders. A
case, demonstrating the wave hierarchy in dissipativelsadk analysed in [4]. For a dissipative
microstructured solids where dissipation rates are diffefor macro- and microstructure, the
final linearized governing equation in the dimensionlesmfis the following:

3 (au 92U of, du au 9%u
4 Sk |+ 22 (LS +ME — K< | = 0.
@) 9E (81 352) * ( ot TV gE T 23g2

whereu stands for the displacement gradiengndé are the moving coordinatek,;, Ko, L, N
are the constants aridis the input-depending scale parameter. Equation (4) isetefrom
the conventional equations of motion in the reference foynudéing the asymptotic (reductive
perturbative) method (see, for example [3]). Rosmall, the influence of the microstructure
may be neglected and dissipation is governed by the conktgrfor A large, the dissipation is
governed by microstructural properties, i.e. Ky, while K; # Ko.

Waves in dispersive solids (granular materials) wherdghsi®n is neglected are analysed
in [7]. In this case for scaled density fluctuatiarthe governing equation is

32 faw  aw 33w w  aw 33w
5 [ = 4+w— + N — — fw—+N,— ) =0
© asz(af+ o 1853>+“<3f+ % " 2353)
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whereN1, Ny, u are the coefficients. Contrary to the case (3.1), here digpeis important and
(5) represents actually a hierarchy of the Korteweg-de s/giguations. Intuitively, denoting by
7t an operator for the Burger’'s-type (dissipative) mateyidsrteweg-de Vries-type (dispersive)
materials, or both, the hierarchy of waves could be reptesdy

Y
EMmM—=7Tm = 0
m &7

wherem denotes the operator fon-th scale andy — a corresponding small parameter, if
any. Hencesg denotes the wave operator in the highest, i.e. in the maaio(e.f. Section
2.1). The order of derivatives(m) represents the order of coupling between various effects.
As a conjecture, one could propose that dispersive effeetslearacterized by = 2,4,... and
dissipative effects — by = 1,3,... (c.f. Egs (4) and (5)).

3.2. Process hierarchy and hierarchical internal variabls.

Beside the different scales, the embedded microstrucaweesometimes characterized by com-
pletely different physical processes going on simultasgouAs said before, such processes
are internal and governed by internal variables [10], [1Bhow these processes are linked to
the macrobehaviour by a certain hierarchy then the correlipg internal variables form also a
hierarchy. We use then notion of hierarchical internalalaigs [6].

In general terms, the idea of building up the mathematicalehis the following [6]:
1) a constitutive equation for a dependent variable,csdiye. stress, for example), depends on
observable variablg and thefirst-levelinternal variablex

o =o(x,a);
2) the evolution law for is

(6) a=fx ap),

whereg is the next,second-leveinternal variable influencing only through dynamics of the
first-level internal variable;
3) the evolution law foB is

(7) B=9(x.a B,y

wherey is again the next, now ththird-level internal variable, influencing only through
dynamics of the second level internal variate
4) the evolution law foy is

(8) )./ =h(X’a7ﬂ5 y’ "')7

etc.

Internal variablesy, B, v, ... form a hierarchy reflecting the hierarchical processes én th
material.

Consequently, the mathematical model of the macrobehaisagoverned by a system in-
cluding several equations that can be of the various typeste,Mowever, that Egs. (6), (7),
(8) could also include gradients and then at least the gowvgisystem is composed by partial
differential equation.
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4. Example: cardiac muscle contraction

Here we refer to the fundamental treatises on cardiac pedioce [8], [16]. In terms of contin-
uum mechanics, ventricles are thick-walled shells madenisioéropic fibres. These fibres have
complicated microstructure and act as following. The maifibires are made up by the bunches
of smaller elements called myofibrils with a surroundingcetubular system. The main task of
myofibrils is to convert metabolic energy into mechanicargy while the surrounding sarco-
tubular system governs the behaviouz2+ ions needed for activation. In sense of continuum
mechanics, these processes include the internal variedaegared to the observable macrovari-
ables like strain. The stress in the muscle is the dependeigble and its constitutive law is
linked to the observable variable and then the hierarchntefial variables. Leaving aside the
details of this extremely fascinating mechanism (the readesferred to [6], [14]), we concen-
trate here on the description of the mathematical model.

We assume, that the total (Cauchy) stress in the muscle csplibap into two parts
0 =0p+0a,

whereo p ando 5 denote passive and active stress, respectively. The pastsass results from
the elastic deformation of the tissue and can be calculatgitipnally like

oy

TP e

wherey is the free energy anef is the strain. Givenys, the passive stress is easily calculated.
The active stressy is generated in myofibrils by activation and is directed lbalréo the fibre
orientation. Hence

Oga = 0a€1€],

wheree is the unit vector showing the orientation. Now the comp#damechanism producing
active stress needs the more detailed description of theeseq of internal variables, which are
the main actors. At this structural level, myofibrils are #tarting point. A myofibril is com-
posed of repeating units of myosin and actin filaments, dagcomeres. The actin filament is
made of a double helix of actin molecules with troponin males localized in certain intervals.
The myosin filament consists of myosin proteins with certgpatially localized meromyosin
molecules with heads resembling "golf-clubs”. These headsalled cross-bridges. The excita-
tion of a muscle is triggered by an action potential from theducting system. This potential in
its turn release€ a?* ions in the sarcotubular system which then activate theotrmpmolecules
so that they will be able to attach the heads of myosin moéscuThis attaching means swiv-
elling of myosin molecules that cause sliding the actin aydsin filaments against each other.
As aresult, active stress is created.

The mechanism briefly described above (for details see18],4nd the references therein)
needs to be cast into a mathematical model.

We start here from the macrolevel down. The force on actinemdes (along the actin
filament) depends on the distarebetween an attached cross-bridge and the nearest actin site
There are two states through the cycle, producing force.ofbemthem byA and B, we may
calculate the corresponding forces by

Fa=Kaz Fg =Kpz

whereK 5, Kpg are elastic constants. Further we takg = Kg = K. The total force over a
sarcomere of the lengtg depends on the number of crossbridges betveesamdz — dzin both
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states. We take the uniform distribution of crossbridgesadmer an internatl. The active stress

is then found by
<K d/2 d/2
oa = m's / nA(z)dz+/ ng(zdz
2d —d/2 —d/2

wherem is the number of cross-bridges per unit volume apdz), ng(z) are relative amounts
of cross-bridges producing force (i.e. being in stadesnd B). These variables)p andng are
nothing else than thérst-level internal variables They (c.f. Section 3.2) are governed by the
following kinetic equations

anp

na finc + gon (g1 + f2)n
w—— = - s
ot 9z 1Nc + gz2ng — (Q1 2)NA

a;—tB wag—zB = fina — (g2 + f3)ng,
whereuw is the velocity of lengtheningfy, fo, f3, 91, g2 are kinetic constants between the states
andnc is the amount of cross-bridges that does not produce forlearlg, the summation of all
activated cross-bridges gives
A=na+ng+nc.

Now, A is the next, i.e. thesecond-level internal variablgehe changes of which affects the
variableog only overna, ng. The internal variableA (the activation parameter) has its own
kinetic equation

A
©) — =c(l9)[CaT](1 = A) — ca(l9) A,

dt
with c1(Is), co(ls) as certain parameters. Equation (9) involvesttti-level internal variable
[Ca2t] which must be governed by its own kinetic equation

d[Ca?t]

_ 2+
g = racaT].

In practice, the last equation is usually replaced by the@@mation of experimental curves.
So, in this case the variabtg is influenced by three levels of internal variables that farm
hierarchy.
The calculations of contraction are performed by usingrtioslel and FEM for the idealized
spheroidal left ventricle and will be published elsewhere.

5. Discussion

As explained in Section 3 and demonstrated in Section 4atdkies of the internal structure of
a material (body, tissue) lead to certain hierarchies irheragtical models. These hierarchies
can be either the hierarchy of waves in the Whitham’s senSgdt.the hierarchy of internal
variables. Both cases need actually more detailed analff$ie models are complicated that
is why in order to get practical results, numerical simalatmust be used. However, there are
many open questions also from the theoretical viewpoint.

For example, the question on dispersive properties embeitie the hierarchy of waves
must be analysed. Itis known that higher-order dispersgaoms are the same in the wave hierar-
chy ((3.2) in [7]) and in the governing equation obtained kiract asymptotic derivation [11].
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This certainly shows the correctness in leading terms leuptbperties of the wave hierarchy are
not clear.

For hierarchical internal variables the line of questicgsnss to be longer. The extra entropy
flux k in the formalism of internal variables [10], [13] dependsritalso on internal variables
in a certain sequence that must be analysed. Open is theaqudsiw to construct dissipative
potentialsDy, Dg, Dy, ... corresponding to the each level of internal variables. étsg that a
more detailed formalism of internal variables might caghtiover the formation of dissipative
structures.
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