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MICROSTRUCTURE DESCRIBED BY HIERARCHICAL

INTERNAL VARIABLES

Abstract. In this paper a clear distinction is made between the different scales and
the different processes in the microstructure which influence the dynamics at the
macrolevel. In the first case the governing equation for wavepropagation is repre-
sented by a hierarchy of waves. In the second case it has been shown, how useful
the concept of internal variables is. The different processes can be best described
by a hierarchy of internal variables. An example of cardiac muscle contraction is
briefly described, demonstrating the dependence of the active stress on sliding the
molecules and ion concentration involving the corresponding internal variables.

1. Introduction

Continuum mechanics is usually based on macroscopic concepts and quantities, such as energy
density, stress, strain, etc. However, materials (whatever their origin is) have usually a mi-
crostructure because of inhomogeneities, pores, embeddedlayers, reinforcements, etc.. This list
can be prolonged but one is clear - the description of the behaviour of many materials should take
into account both the macroscopic and microscopic properties, occuring at different length scales
and involving different physical effects. Within the framework of continuum mechanics, such a
behaviour is best described by distinguishing macro stresses and microstresses with interactive
microforces ([1], [2]). We feel however, that for materialswith complicated properties indicated
above, one should start distinguishing clearly the observable and internal variables ([10], [13]).
Although the formalism of internal variables is well known ([10], [13]), for the clarity sake we
repeat here some basic concepts.

The observable variables are the usual macroscopic field quantities such as elastic strain, for
example. These variables are governed by conservation lawsand possess inertia. The internal
structure of the material (body, tissue, composite, etc.) is supposed to be described by internal
variables which are not observable and do not possess inertia. They should compensate our
lack of knowledge of the precise description of the microstructure. The formalism of internal
variables involves constructing of a dissipation potential D in parallel to the LagrangianL for the
observable variable. However, the governing equations of internal variables are kinetic equations
(not hyperbolic) – see [10], [13].

The idea of using internal variables for describing dynamical processes in microstructured
materials has earlier been presented in [12], [4]. The problems become more complicated when
either the scales or possible processes in materials are different and form a certain hierarchy. This
brings us directly to the idea of hierarchical internal variables that certainly need generalization
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of the existing formalism. An example and main concepts of hierarchical internal variables are
given in [6], here a certain systematic approach is presented following by an example.

In Section 2 basic ideas of modelling are briefly described. The description involves contin-
uum mechanics, internal variables and evolution equations- all needed for further presentation.
More detailed description can, for example, be found in [3].Section 3 presents the central ide-
ology of this paper. It makes clear distinction between different scales and different processes in
the microstructure. In the first case the result is a wave hierarchy, in the second case - a hierarchy
of internal variables. In Section 4 an example is presented,illustrating the hierarchical internal
variables. The case study is based on the contraction of the cardiac muscle depending on the cell
energetics. Last Section 5 includes conclusions and open problems.

2. Basic modelling

2.1. Continuum mechanics

To be brief, we refer to [1], [2] for basic concepts for microstructured solids. For a bodyB ⊂ <3

with microstructure, an added fieldδ describes the mechanical characteristics of the microstruc-
ture. The stress fields can be introduced after the definitionof the expended power in arbitrary
processes [9], including a macroscopic (gross structure) stress and force, a microscopic (fine
structure) stress and force, and an interaction force between the macro- and microstructures. In
[2], this approach has been extended to include different microstructures at their characteristic
scales. Then for arbitrary regionW in <3 with outward unit normalm we have for the actual
power50(W):

50(W) =

∫

∂W
Tgm · vda+

∫

W

fg · vdv +5micro,1(W).

Herev is the velocity,Tg is the macroscopic stress, andfg is the macroscopic body force.
Note that indexing has here and below been changed compared with [2]. The field5micro,1(W)

is the power expended by the microstructure. Further, the difference from the general theory [9]
involves a sequence of microscopic processesdk, k = 2, 3, .... Now, we can magnify a small
region ofW iteratively by magnificationsλk. At the first stage

5micro,1(W) =

∫

∂W1

T1m · v1da+

∫

W1

f1 · v1dv +5micro,2(W).

wherev1 = λv + ḋ1 andT1 is the microscopic stress at this level. Further on,

5micro,2(W) =

∫

∂W2

T2m · v2da+

∫

W2

f2 · v2dv +5micro,3(W),

etc. (for details, see [2]. The general balance laws can now easily be rewritten in the referential
form.

2.2. Internal variables

The formalism of internal variables is presented in [10], [13]. Here we need point out just
essentials for further analysis in Section 3. The behaviourof a system, i.e. dynamic state of a
body involves description of observable state variablesχ (e.g. elastic strain and particle velocity)
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and a certain number of internal variablesα. The dependent variable(s) (e.g. the stress) must be
simultaneously a function of both

σ = σ(χ, α)

which must be complemented by a governing equation forα:

(1) α̇ = f (χ, α)+ g(χ, α)χ̇.

It is assumed that the strainε is split up in an elastic partεe and an ”anelastic” partε p:

ε = εe + ε p.

The free energy functionψ is assumed to be

ψ = ψ(εe, T;α,∇α)

whereT is temperature. The equations of motion are then easily derived. In addition, we need
to concretize Eq (1). For that, a dissipation potentialD is postulated

D = D(σ, α̇, εe, T, α,∇α) > 0

possessing certain properties [10]. Then the governing Eq (1) for α is derived as

δψ

δα
+
∂D

∂α̇
= 0.

As a rule, this equation is not hyperbolic.

2.3. Mathematical models

It is clear that mathematical models involving both observable and internal variables are of the
mixed (e.g. inertial-diffusive [10]) type. The general ideas for asymptotic analysis of such
systems are presented in [4], [5]. To get an idea, the simplest 1D case could be described. Let
an n-vectorU be the vector of the observable variables, a scalarw – the internal variable and
X1 = X. Then the governing system is of the following form

(2) I
∂U
∂t

+ A1
∂U
∂X

+ εB11
∂2U
∂t∂X

+ h.o.t = H(U, w)

(3)
∂w

∂t
+ d11

∂2w

∂X2
+ h.o.t = p(U, w)

where I is a unit matrix,A1(U, X), B11(U, X) are the matrices of parameters,H(U, w) and
p(U, w) are the coupling vector and function, respectively,d11 is a constant andε a small pa-
rameter while h.o.t stands for higher order terms (derivatives).

It is proposed [4], [5] to use conventional asymptotic approach for deriving the evolution
equation(s) for system (2), (3) (see [3]).
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3. Types of models

Depending on the different length and time scales, the asymptotic governing equations derived
along the ideas of Section 2, may have different character. Nevertheless, it is possible to distin-
guish between the two types of governing equations.

Thefirst typeis based on structural hierarchy of a material (body) and strong dependence on
length scales within the material and of the excitation which are the leading factors. The simplest
example is just a material where macro- and microstructure are described by their own balance
laws [1], [9]. It means that the dynamic behaviour of the constituents is basically similar and
differs in parameters.

Thesecond typeis based on process hierarchy in a material (body) where at various levels
various dynamical processes are of importance, all influencing the macrobehaviour. This is
an example of the cardiac muscle [6] and characterized best by internal variables that form a
hierarchy.

Below both types are briefly characterized.

3.1. Structural hierarchy and hierarchy of waves.

Many materials possess microstructure at various scales. On the other hand, it is widely known
that dissipation and dispersion is different for various frequency scales. Hence, given the initial
excitation with a fixed frequency (wavelength), the response of the material depends actually
on a certain underlying microstructure which is responsible for the governing physical effects.
Actually, this could be just a case of macro- and microstructure, or then a case of several mi-
crostructures. The outcome, i.e. the governing equation should certainly reflect this possible
choice emphasized by certain input-dependent parameters.One could intuitively address the
problem asking a question, which material properties are more important: those characteristic to
the macrostructure or those characteristic to the microstructure of a certain level. It is clear that
a single governing equation should have a certain hierarchyembedded into it.

Wave hierarchies are analysed by Whitham [15], showing the hierarchy of just two orders. A
case, demonstrating the wave hierarchy in dissipative solids, is analysed in [4]. For a dissipative
microstructured solids where dissipation rates are different for macro- and microstructure, the
final linearized governing equation in the dimensionless form is the following:

(4)
∂

∂ξ

(

∂u

∂τ
− K1

∂2u

∂ξ2

)

+ λ2

(

L
∂u

∂τ
+ M

∂u

∂ξ
− K2

∂2u

∂ξ2

)

= 0.

whereu stands for the displacement gradient,τ andξ are the moving coordinates,K1, K2, L , N
are the constants andλ is the input-depending scale parameter. Equation (4) is derived from
the conventional equations of motion in the reference form by using the asymptotic (reductive
perturbative) method (see, for example [3]). Forλ small, the influence of the microstructure
may be neglected and dissipation is governed by the constantK1, for λ large, the dissipation is
governed by microstructural properties, i.e. byK2, while K1 6= K2.

Waves in dispersive solids (granular materials) where dissipation is neglected are analysed
in [7]. In this case for scaled density fluctuationw the governing equation is

(5)
∂2

∂ξ2

(

∂w

∂τ
+ w

∂w

∂ξ
+ N1

∂3w

∂ξ3

)

+ µ

(

∂w

∂τ
+ w

∂w

∂ξ
+ N2

∂3w

∂ξ3

)

= 0.
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whereN1, N2, µ are the coefficients. Contrary to the case (3.1), here dispersion is important and
(5) represents actually a hierarchy of the Korteweg-de Vries equations. Intuitively, denoting by
π an operator for the Burger’s-type (dissipative) materials, Korteweg-de Vries-type (dispersive)
materials, or both, the hierarchy of waves could be represented by

∑

m
εm

∂n

∂ξn πm = 0

whereπm denotes the operator form-th scale andεm – a corresponding small parameter, if
any. Hence,π0 denotes the wave operator in the highest, i.e. in the macrolevel (c.f. Section
2.1). The order of derivativesn(m) represents the order of coupling between various effects.
As a conjecture, one could propose that dispersive effects are characterized byn = 2,4,... and
dissipative effects – byn = 1,3,... (c.f. Eqs (4) and (5)).

3.2. Process hierarchy and hierarchical internal variables.

Beside the different scales, the embedded microstructuresare sometimes characterized by com-
pletely different physical processes going on simultaneously. As said before, such processes
are internal and governed by internal variables [10], [13].If now these processes are linked to
the macrobehaviour by a certain hierarchy then the corresponding internal variables form also a
hierarchy. We use then notion of hierarchical internal variables [6].

In general terms, the idea of building up the mathematical model is the following [6]:
1) a constitutive equation for a dependent variable, sayσ (i.e. stress, for example), depends on
observable variableχ and thefirst-levelinternal variableα

σ = σ(χ, α);

2) the evolution law forα is

(6) α̇ = f (χ, α, β),

whereβ is the next,second-levelinternal variable influencingσ only through dynamics of the
first-level internal variableα;
3) the evolution law forβ is

(7) β̇ = g(χ, α, β, γ ),

whereγ is again the next, now thethird-level internal variable, influencingσ only through
dynamics of the second level internal variableβ;
4) the evolution law forγ is

(8) γ̇ = h(χ, α, β, γ, ...),

etc.

Internal variablesα, β, γ, ... form a hierarchy reflecting the hierarchical processes in the
material.

Consequently, the mathematical model of the macrobehaviour is governed by a system in-
cluding several equations that can be of the various types. Note, however, that Eqs. (6), (7),
(8) could also include gradients and then at least the governing system is composed by partial
differential equation.
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4. Example: cardiac muscle contraction

Here we refer to the fundamental treatises on cardiac performance [8], [16]. In terms of contin-
uum mechanics, ventricles are thick-walled shells made of anisotropic fibres. These fibres have
complicated microstructure and act as following. The muscle fibres are made up by the bunches
of smaller elements called myofibrils with a surrounding sarcotubular system. The main task of
myofibrils is to convert metabolic energy into mechanical energy while the surrounding sarco-
tubular system governs the behaviour ofCa2+ ions needed for activation. In sense of continuum
mechanics, these processes include the internal variablescompared to the observable macrovari-
ables like strain. The stress in the muscle is the dependent variable and its constitutive law is
linked to the observable variable and then the hierarchy of internal variables. Leaving aside the
details of this extremely fascinating mechanism (the reader is referred to [6], [14]), we concen-
trate here on the description of the mathematical model.

We assume, that the total (Cauchy) stress in the muscle can besplit up into two parts

σσσ = σσσ p + σσσa,

whereσσσ p andσσσa denote passive and active stress, respectively. The passive stress results from
the elastic deformation of the tissue and can be calculated traditionally like

σσσ p =
∂ψ

∂εεεe ,

whereψ is the free energy andεεεe is the strain. Givenψ , the passive stress is easily calculated.
The active stressσa is generated in myofibrils by activation and is directed parallel to the fibre
orientation. Hence

σσσa = σaεεε1εεε1,

whereε1 is the unit vector showing the orientation. Now the complicated mechanism producing
active stress needs the more detailed description of the sequence of internal variables, which are
the main actors. At this structural level, myofibrils are thestarting point. A myofibril is com-
posed of repeating units of myosin and actin filaments, called sarcomeres. The actin filament is
made of a double helix of actin molecules with troponin molecules localized in certain intervals.
The myosin filament consists of myosin proteins with certainspatially localized meromyosin
molecules with heads resembling ”golf-clubs”. These headsare called cross-bridges. The excita-
tion of a muscle is triggered by an action potential from the conducting system. This potential in
its turn releasesCa2+ ions in the sarcotubular system which then activate the troponin molecules
so that they will be able to attach the heads of myosin molecules. This attaching means swiv-
elling of myosin molecules that cause sliding the actin and myosin filaments against each other.
As a result, active stress is created.

The mechanism briefly described above (for details see [6], [14] and the references therein)
needs to be cast into a mathematical model.

We start here from the macrolevel down. The force on actin molecules (along the actin
filament) depends on the distancez between an attached cross-bridge and the nearest actin site.
There are two states through the cycle, producing force. Denoting them byA and B, we may
calculate the corresponding forces by

FA = K A z, FB = KB z

whereK A, KB are elastic constants. Further we takeK A = KB = K . The total force over a
sarcomere of the lengthls depends on the number of crossbridges betweenz andz − dz in both



Microstructure described 89

states. We take the uniform distribution of crossbridges inz over an internald. The active stress
is then found by

σa =
mlsK

2d

(

∫ d/2

−d/2
nA(z)dz+

∫ d/2

−d/2
nB(z)dz

)

wherem is the number of cross-bridges per unit volume andnA(z),nB(z) are relative amounts
of cross-bridges producing force (i.e. being in statesA andB). These variables,nA andnB are
nothing else than thefirst-level internal variables. They (c.f. Section 3.2) are governed by the
following kinetic equations

∂nA

∂t
+ w

∂nA

∂z
= f1nC + g2nB − (g1 + f2)nA,

∂nB

∂t
+w

∂nB

∂z
= f1nA − (g2 + f3)nB,

wherew is the velocity of lengthening,f1, f2, f3, g1, g2 are kinetic constants between the states
andnC is the amount of cross-bridges that does not produce force. Clearly, the summation of all
activated cross-bridges gives

A = nA + nB + nC .

Now, A is the next, i.e. thesecond-level internal variable, the changes of which affects the
variableσa only overnA,nB. The internal variableA (the activation parameter) has its own
kinetic equation

(9)
d A

dt
= c1(ls)[Ca2+](1 − A)− c2(ls)A,

with c1(ls), c2(ls) as certain parameters. Equation (9) involves thethird-level internal variable
[Ca2+] which must be governed by its own kinetic equation

d[Ca2+]

dt
= f ([Ca2+]).

In practice, the last equation is usually replaced by the approximation of experimental curves.

So, in this case the variableσa is influenced by three levels of internal variables that forma
hierarchy.

The calculations of contraction are performed by using thismodel and FEM for the idealized
spheroidal left ventricle and will be published elsewhere.

5. Discussion

As explained in Section 3 and demonstrated in Section 4, hierarchies of the internal structure of
a material (body, tissue) lead to certain hierarchies in mathematical models. These hierarchies
can be either the hierarchy of waves in the Whitham’s sense [15] or the hierarchy of internal
variables. Both cases need actually more detailed analysis. The models are complicated that
is why in order to get practical results, numerical simulation must be used. However, there are
many open questions also from the theoretical viewpoint.

For example, the question on dispersive properties embedded into the hierarchy of waves
must be analysed. It is known that higher-order dispersion terms are the same in the wave hierar-
chy ((3.2) in [7]) and in the governing equation obtained by adirect asymptotic derivation [11].
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This certainly shows the correctness in leading terms but the properties of the wave hierarchy are
not clear.

For hierarchical internal variables the line of questions seems to be longer. The extra entropy
flux k in the formalism of internal variables [10], [13] depends then also on internal variables
in a certain sequence that must be analysed. Open is the question, how to construct dissipative
potentialsDα,Dβ ,Dγ , ... corresponding to the each level of internal variables. It seems, that a
more detailed formalism of internal variables might cast light over the formation of dissipative
structures.

References

[1] CAPRIZ G.,Continua with microstructure, Springer, New York 1989.

[2] CERMELLI P. AND PASTRONEF., Influence of a dissipative microstructure on wave prop-
agation, in: “Nonlinear waves in solids”, (Eds. J.L. Wegner and F.R.Norwood), ASME
Book 1371995, 279–284.

[3] ENGELBRECHTJ.,Nonlinear wave dynamics: complexity and simplicity, 1997.

[4] ENGELBRECHTJ., CERMELLI P. AND PASTRONEF., Wave hierarchy in microstructured
solids, in: “Geometry, continua and microstructure” (Ed. G.A. Maugin), Hermann Publ.,
Paris 1999, 99–111.

[5] ENGELBRECHT J. AND MAUGIN G.A., Deformation waves in thermoelastic media and
the concept of internal variables, Arch. Appl. Mech.66 (1996), 200–207.

[6] ENGELBRECHTJ., VENDELIN M. AND MAUGIN G.A., Hierarchical internal variables
reflecting microstructural properties: application to cardiac muscle contraction, J. Non-
Equilib. Thermodyn.25 (2000), 119–130.

[7] GIOVINE P. AND OLIVERI F., Dynamics and wave propagation in dilatant granular ma-
terials, Meccanica30 (1995), 341–357.

[8] GLASS L., HUNTER .P, AND MCCULLOCH A., Theory of heart. Biomechanics, bio-
physics, and nonlinear dynamics of cardiac function, Springer, New York 1991.

[9] GURTIN M.E. AND PODIO-GUIDUGLI P.,On the formulation of mechanical balance laws
for structured continua, ZAMP 43 (1992), 181–190.

[10] MAUGIN G.A., Internal variables and dissipative structures, J. Non-Equilib. Thermodyn.
15 (1990), 173–192.

[11] MAUGIN G.A., On some generalizations of Boussinesq and KdV systems, Proc. Estonian
Acad. Sci. Phys. Math.44 (1995), 40–55.

[12] MAUGIN G.A. AND ENGELBRECHTJ.,A thermodynamical viewpoint on nerve pulse dy-
namics, Proc. Estonian Acad. Sci. Phys. Math.19 (1994), 9–23.

[13] MAUGIN G.A. AND MUSCHIK W., Thermodynamics with internal variables, Ibid 19
(1994), 217–249 (part I), 250–289 (part II).

[14] VENDELIN M., BOVENDEERD P.H.M., ARTS T., ENGELBRECHT J. AND VAN CAM -
PEN D.H., Cardiac mechanoenergetics replicated by cross-bridge model, Annals Biomed.
Eng.286 (2000), 629–640.

[15] WHITHAM G.B.,Linear and nonlinear waves, J. Wiley, New York 1974.

[16] ZIPES D.P. AND JALIFE J., Cardiac electrophysiology: from cell to bedside, Saunders,
Philadelphia 1995.



Microstructure described 91

AMS Subject Classification: 35Q53, 74J30, 92C05.
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